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Chapter 1

INTRODUCTION

1.1 Science and Technology

1 “There is a fundamental difference between science and and technology. Engineering or
technology is the making of things that did not previously exist, whereas science is the discov-
ering of things that have long existed. Technological results are forms that exist only because
people want to make them, whereas scientific results are informations of what exists indepen-
dently of human intentions. Technology deals with the artificial, science with the natural.”
(Billington 1985)

1.2 Structural Engineering

2 Structural engineers are responsible for the detailed analysis and design of:

Architectural structures: Buildings, houses, factories. They must work in close cooperation
with an architect who will ultimately be responsible for the design.

Civil Infrastructures: Bridges, dams, pipelines, offshore structures. They work with trans-
portation, hydraulic, nuclear and other engineers. For those structures they play the
leading role.

Aerospace, Mechanical, Naval structures: aeroplanes, spacecrafts, cars, ships, submarines
to ensure the structural safety of those important structures.

1.3 Structures and their Surroundings

3 Structural design is affected by various environmental constraints:

1. Major movements: For example, elevator shafts are usually shear walls good at resisting
lateral load (wind, earthquake).

2. Sound and structure interact:

e A dome roof will concentrate the sound

e A dish roof will diffuse the sound
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1.6 Architectural Design

12 Architectural design must respect various constraints:

Functionality: Influence of the adopted structure on the purposes for which the structure was
erected.

Aesthetics: The architect often imposes his aesthetic concerns on the engineer. This in turn
can place severe limitations on the structural system.

Economy: It should be kept in mind that the two largest components of a structure are labors
and materials. Design cost is comparatively negligible.

13 Buildings may have different functions:

Residential: housing, which includes low-rise (up tp 2-3 floors), mid-rise (up to 6-8 floors)
and high rise buildings.

Commercial: Offices, retail stores, shopping centers, hotels, restaurants.
Industrial: warehouses, manufacturing.
Institutional: Schools, hospitals, prisons, chruch, government buildings.

Special: Towers, stadium, parking, airport, etc.

1.7 Structural Analysis

14 Given an existing structure subjected to a certain load determine internal forces (axial,
shear, flexural, torsional; or stresses), deflections, and verify that no unstable failure can occur.
15 Thus the basic structural requirements are:

Strength: stresses should not exceed critical values: o < oy

Stiffness: deflections should be controlled: A < Az

Stability: buckling or cracking should also be prevented

1.8 Structural Design

16 Given a set of forces, dimension the structural element.
Steel/wood Structures Select appropriate section.
Reinforced Concrete: Determine dimensions of the element and internal reinforcement (num-

ber and sizes of reinforcing bars).

17 For new structures, iterative process between analysis and design. A preliminary design is
made using rules of thumbs (best known to Engineers with design experience) and analyzed.
Following design, we check for

Victor Saouma Structural Concepts and Systems for Architects
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Tension & Compression Structures: only, no shear, flexure, or torsion. Those are the
most efficient types of structures.

Cable (tension only): The high strength of steel cables, combined with the efficiency of
simple tension, makes cables ideal structural elements to span large distances such
as bridges, and dish roofs, Fig. 1.2. A cable structure develops its load carrying

AN

WW

cable forms - concentrated loads

Wcatenary
bol
load uniform on cable length parabota

load uniform on span
cable forms - distributed loads

force resolution:
cable with no
resistance to

bending or shear

the less the sag, the greater the horizontal reaction

problems:
reforming when flutter or flap !
load shifts due to uplift force deflection due to

stretching of cable

Figure 1.2: Basic Aspects of Cable Systems

capacity by adjusting its shape so as to provide maximum resistance (form follows
function). Care should be exercised in minimizing large deflections and vibrations.

Arches (mostly compression) is a “reversed cable structure”. In an arch, flexure/shear
is minimized and most of the load is transfered through axial forces only. Arches are

Victor Saouma Structural Concepts and Systems for Architects
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Figure 1.4: Types of Trusses
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Figure 1.6: Different Beam Types
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1.11 Structural Engineering Courses 25

Folded plates are used mostly as long span roofs. However, they can also be used as
vertical walls to support both vertical and horizontal loads.

Membranes: 3D structures composed of a flexible 2D surface resisting tension only. They are
usually cable-supported and are used for tents and long span roofs Fig. 1.8.

single surface - tension maintained

\ T / by pressure difference between
= interior of building and outside

double surface - tension
and stiffening produced by
inflation of the structure

double surface - bottom
draped in tension from the
supports, top held up

by internal inflation

cable restrained - internal
pressure pushes membrane
against the network of
restraining cables

Figure 1.8: Examples of Air Supported Structures

Shells: 3D structures composed of a curved 2D surface, they are usually shaped to transmit
compressive axial stresses only, Fig. 1.9.

Shells are classified in terms of their curvature.

1.11 Structural Engineering Courses
22 Structural engineering education can be approached from either one of two points of views,
depending on the audience, ?77.

Architects: Start from overall design, and move toward detailed analysis. Emphasis on good
understanding of overall structural behavior. Develop a good understanding of load trans-

Victor Saouma Structural Concepts and Systems for Architects



1.12 References 27

fer mechanism for most types of structures, cables, arches, beams, frames, shells, plates.
Approximate analysis for most of them.

Engineers: Emphasis is on the individual structural elements and not always on the total
system. Focus on beams, frames (mostly 2D) and trusses. Very seldom are arches covered.
Plates and shells are not even mentioned.

1.12 References

23 Following are some useful references for structural engineering, those marked by t were con-
sulted, and “borrowed from” in preparing the Lecture Notes or are particularly recommended.

Structures for Architect

1. Ambrose, J., Building Structures, second Ed. Wiley, 1993.

2. Billington, D.P. Rober Maillart’s Bridges; The Art of Engineering, Princeton Uni-
versity Pres, 1979.

3. tBillington, D.P., The Tower and the Bridge; The new art of structural engineering,
Princeton University Pres,, 1983.

4. tBillington, D.P., Structures and the Urban Environment, Lectures Notes CE 262,
Department of Civil Engineering, Princeton University, 1978

5. French, S., Determinate Structures; Statics, Strength, Analysis, Design, Delmar,
1996.

6. Gordon, J.E., Structures, or Why Things Do’nt Full Down, Da Capo paperback,
New York, 1978.

7. Gordon, J.E., The Science of Structures and Materials, Scientific American Library,
1988.

8. Hawkes, N., Structures, the way things are built, MacMillan, 1990.
9. Levy, M. and Salvadori, M., Why Buildings Fall Down, W.W.Norton, 1992.

10. fLin, T.Y. and Stotesbury, S.D., Structural Concepts and Systems for Architects and
Engineers, John Wiley, 1981.

11. tMainstone, R., Developments in Structural Form, Allen Lane Publishers, 1975.
12. Petroski, H., To Enginer is Human, Vintage Books, 1992.

13. fSalvadori, M. and Heller, R., Structure in Architecture; The Building of Buildings,
Prentice Hall, Third Edition, 1986.

14. Salvadori, M. and Levy, M., Structural Design in Architecture, Prentice hall, Second
Edition, 1981.

15. Salvadori, M., Why Buildings Stand Up; The Strength of Architecture, Norton Pa-
perack, 1990.

16. fSandaker, B.N. and Eggen, A.P., The Structural Basis of Architecture, Whitney
Library of Design, 1992.

17. Schueller, W., The design of Building Structures, Prentice Hall, 1996.

Structures for Engineers
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Chapter 2

LOADS

2.1 Introduction

1 The main purpose of a structure is to transfer load from one point to another: bridge deck to
pier; slab to beam; beam to girder; girder to column; column to foundation; foundation to soil.

> There can also be secondary loads such as thermal (in restrained structures), differential
settlement of foundations, P-Delta effects (additional moment caused by the product of the
vertical force and the lateral displacement caused by lateral load in a high rise building).

s Loads are generally subdivided into two categories
Vertical Loads or gravity load

1. dead load (DL)
2. live load (LL)

also included are snow loads.
Lateral Loads which act horizontally on the structure

1. Wind load (WL)
2. Earthquake load (EL)

this also includes hydrostatic and earth loads.

4 This distinction is helpful not only to compute a structure’s load, but also to assign different
factor of safety to each one.

5 For a detailed coverage of loads, refer to the Universal Building Code (UBC), (UBC 1995).

2.2 Vertical Loads

¢ For closely spaced identical loads (such as joist loads), it is customary to treat them as a
uniformly distributed load rather than as discrete loads, Fig. 2.1
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Material ‘ Fb/ft2 ‘
Ceilings
Channel suspended system 1
Acoustical fiber tile 1
Floors
Steel deck 2-10
Concrete-plain 1 in. 12
Linoleum 1/4 in. 1
Hardwood 4
Roofs
Copper or tin 1-5
5 ply felt and gravel 6
Shingles asphalt 3
Clay tiles 9-14
Sheathing wood 3
Insulation 1 in. poured in place 2
Partitions
Clay tile 3 in. 17
Clay tile 10 in. 40
Gypsum Block 5 in. 14
Wood studs 2x4 (12-16 in. o.c.) 2
Plaster 1 in. cement 10
Plaster 1 in. gypsum )
Walls
Bricks 4 in. 40
Bricks 12 in. 120
Hollow concrete block (heavy aggregate)
4 in. 30
8 in. 55
12 in. 80
Hollow concrete block (light aggregate)
4 in. 21
8 in. 38
12 in. 55

Table 2.2: Weights of Building Materials

Material 1b/ft?
Timber 40-50
Steel 50-80
Reinforced concrete | 100-150

Table 2.3: Average Gross Dead Load in Buildings

Victor Saouma
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Floor Roof 10 9 8 7 6 5 4 3 2 | Total
Cumulative R (%) 8.48 16.96 25.44 33.92 42.4 51.32 59.8 60 60 60
Cumulative LL 20 80 80 80 80 80 80 80 80 80 740
Cumulative Rx LL 18.3 66.4 59.6 52.9 46.08 38.9 322 32 32 32 410

The resulting design live load for the bottom column has been reduced from 740 Kips to
410 Kips|.

5. The total dead load is DL = (10)(60) = 600 Kips, thus the total reduction in load is

740—410
740+6(1)0 X 100:‘

2.2.3 Snow

19 Roof snow load vary greatly depending on geographic location and elevation. They
range from 20 to 45 psf, Fig. 2.2.

@ Extreme variations in snow ioads
precludes mapping at this scale.

Figure 2.2: Snow Map of the United States, ubc

20 Snow loads are always given on the projected length or area on a slope, Fig. 2.3.

21 The steeper the roof, the lower the snow retention. For snow loads greater than 20 psf and
roof pitches @ more than 20° the snow load p may be reduced by

R = (a - 20) (4% - 0.5) (psf) (2.2)

22 Other examples of loads acting on inclined surfaces are shown in Fig. 2.4.
2.3 Lateral Loads
2.3.1 Wind

23 Wind load depend on: velocity of the wind, shape of the building, height, geograph-
ical location, texture of the building surface and stiffness of the structure.

Victor Saouma Structural Concepts and Systems for Architects
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21 Wind loads are particularly significant on tall buildings'.

25 When a steady streamline airflow of velocity V is completely stopped by a rigid body, the
stagnation pressure (or velocity pressure) ¢s; was derived by Bernouilli (1700-1782)

1
gs = 5pV* (2.3)

where the air mass density p is the air weight divided by the acceleration of gravity g = 32.2
ft /sec?. At sea level and a temperature of 15°C (59°F), the air weighs 0.0765 1b/ft this would
yield a pressure of

~ 1(0.0765)1b/ft” <(5280)ft/milev)2 24)
“=3 (32.2)ft/sec? \ (3600)sec/hr '
or
gs = 0.00256V2 (2.5)

where V' is the maximum wind velocity (in miles per hour) and g5 is in psf. V' can be obtained
from wind maps (in the United States 70 <V < 110), Fig. 2.5.

ALASKA

Figure 2.5: Wind Map of the United States, (UBC 1995)

26 During storms, wind velocities may reach values up to or greater than 150 miles per hour,
which corresponds to a dynamic pressure g5 of about 60 psf (as high as the average vertical
occupancy load in buildings).

27 Wind pressure increases with height, Table 2.5.
25 Wind load will cause suction on the leeward sides, Fig. 2.7

20 This magnitude must be modified to account for the shape and surroundings of the building.

!The primary design consideration for very high rise buildings is the excessive drift caused by lateral load
(wind and possibly earthquakes).
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Thus, the design pressure p (psf) is given by

b= CquIQS (2'6)

The pressure is assumed to be normal to all walls and roofs and

C. Velocity Pressure Coefficient accounts for height, exposure and gust factor. It accounts
for the fact that wind velocity increases with height and that dynamic character of the
airflow (i.e the wind pressure is not steady), Table 2.6.

C. Exposure
1.39-2.34 D Open, flat terrain facing large bodies of water
1.06-2.19 C Flat open terrain, extending one-half mile or open from the
site in any full quadrant
0.62-1.80 B Terrain with buildings, forest, or surface irregularities 20 ft
or more in height

Table 2.6: C, Coefficients for Wind Load, (UBC 1995)

Cy Pressure Coeflicient is a shape factor which is given in Table 2.7 for gabled frames.

‘ Windward Side ‘ Leeward Side
Gabled Frames (V:H)
Roof Slope <9:12 —0.7 —0.7
9:12 to 12:12 0.4 -0.7
>12:12 0.7 -0.7
Walls 0.8 —-0.5
Buildings (height < 200 ft)
Vertical Projections height < 40 ft 1.3 —-1.3
height > 40 ft 1.4 —-14
Horizontal Projections —0.7 —-0.7

Table 2.7: Wind Pressure Coefficients Cy;, (UBC 1995)

I Importance Factor as given by Table 2.8. where

I Essential Facilities: Hospitals; Fire and police stations; Tanks; Emergency vehicle
shelters, standby power-generating equipment; Structures and equipment in govern-
ment. communication centers.

ITI Hazardous Facilities: Structures housing, supporting or containing sufficient quan-
tities of toxic or explosive substances to be dangerous to the safety of the general
public if released.

IIT Special occupancy structure: Covered structures whose primary occupancy is pub-
lic assembly, capacity > 300 persons.
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400 I /“
e Eprsufe B‘, 70‘ mp‘h / ‘ /
350 (| e——e Exposure B, 80 mph
| == Exposure C, 70 mph /
+—— Exposure C, 80 mph / )
300
g 250
©
(G}
g 200 o
2
S 150 . /
[}
T 4 7
100 i
y <
50 /z/ & e
g
0

0 5 10 15 20 25 30 35 40 45 50
Approximate Design Wind Pressure (psf)

Figure 2.7: Approximate Design Wind Pressure p for Ordinary Wind Force Resisting Building
Structures

B Example 2-2: Wind Load

Determine the wind forces on the building shown on below which is built in St Louis and is
surrounded by trees.
Solution:

1. From Fig. 2.5 the maximum wind velocity is St. Louis is 70 mph, since the building is
protected we can take C, = 0.7, I = 1.. The base wind pressure is g5 = 0.00256 x (70)? =
12.54 psf.

windward leeward

Wind  7.02 psf 4.39 pst 1R

~—

30
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a a

First Mode Second Mode

vf> MWM L
U \/%VV V T, 1,

ground acceleration

Figure 2.8: Vibrations of a Building

36 The horizontal force at each level is calculated as a portion of the base shear force V'

v 2%y, (2.8)
Ry

where:

Z: Zone Factor: to be determined from Fig. 2.9 and Table 2.10.

':‘-\F;T o

Figure 2.9: Seismic Zones of the United States, (UBC 1995)

I: Importance Factor: which was given by Table 2.8.
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Structural System | Rw | H (ft)
Bearing wall system
Light-framed walls with shear panels
Plywood walls for structures three stories or less 8 65
All other light-framed walls 6 65
Shear walls
Concrete 8 240
Masonry 8 160
Building frame system using trussing or shear walls)
Steel eccentrically braced ductiel frame 10 240
Light-framed walls with shear panels
Plywood walls for structures three stories or less 9 65
All other light-framed walls 7 65
Shear walls
Concrete 8 240
Masonry 8 160
Concentrically braced frames
Steel 8 160
Concrete (only for zones I and 2) 8 -
Heavy timber 8 65
Moment-resisting frame system
Special moment-resisting frames (SMRF)
Steel 12 N.L.
Concrete 12 N.L.
Concrete intermediate moment-resisting frames (IMRF)only for zones 1 and 2 | 8 -
Ordinary moment-resisting frames (OMRF)
Steel 6 160
Concrete (only for zone 1) 5 -
Dual systems (selected cases are for ductile rigid frames only)
Shear walls
Concrete with SMRF 12 N.L.
Masonry with SMRF 8 160
Steel eccentrically braced ductile frame 6-12 | 160-N.L.
Concentrically braced frame 12 N. L.
Steel with steel SMRF 10 N.L.
Steel with steel OMRF 6 160
Concrete with concrete SMRF (only for zones 1 and 2) 9 -

Table 2.12: Partial List of Ry for Various Structure Systems, (UBC 1995)
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5. The total vertical load is
W = 2((200 + 0.5(400)) (20) = 16000 1bs (2.17)
6. The total seismic base shear is
ZIC  (0.3)(1.25)(2.75)
— — =0. 2.18-
Vv o 15 0.086W (2.18-a)
= (0.086)(16000) =|1375 lbs (2.18-b)
7. Since T' < 0.7 sec. there is no whiplash.
8. The load on each floor is thus given by
1 24
F = % =1916.7 lbs (2.19-a)
1375)(12
F = % =1458.3 lbs (2.19-b)
[ |

B Example 2-4: Earthquake Load on a Tall Building, (Schueller 1996)

Determine the approximate critical lateral loading for a 25 storey, ductile, rigid space frame
concrete structure in the short direction. The rigid frames are spaced 25 ft apart in the cross
section and 20 ft in the longitudinal direction. The plan dimension of the building is 175x100 ft,
and the structure is 25(12)=300 ft high. This office building is located in an urban environment
with a wind velocity of 70 mph and in seismic zone 4. For this investigation, an average building

total dead load of 192 psf is used. Soil conditions are unknown.

= 470k

7| 2638k

— 1523k

25(12)=300

200

l

150°
2(300)/3:

300/2=150

3108 k

5)=175"

vvvvvvvy

‘ 5(20)=100°
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2.4 Other Loads

2.4.1 Hydrostatic and Earth

39 Structures below ground must resist lateral earth pressure.

q = K~h (2.28)

1—sin @
1+sin ®

where 7 is the soil density, K = is the pressure coefficient, h is the height.

10 For sand and gravel v = 120 1b/ ft3, and @ ~ 30°.

a1 If the structure is partially submerged, it must also resist hydrostatic pressure of water,
Fig. 2.10.

oy
e

Basement + + hs
v-; hw
A VIS ek
? ? ? /F /F ? surcharge k¥ hg 8,0y
8yhy earth hydrostatic
pressure pressure

Figure 2.10: Earth and Hydrostatic Loads on Structures

q="wh (2.29)

where vy = 62.4 1bs/ft3.

B Example 2-5: Hydrostatic Load

The basement of a building is 12 ft below grade. Ground water is located 9 ft below grade,
what thickness concrete slab is required to exactly balance the hydrostatic uplift?
Solution:
The hydrostatic pressure must be countered by the pressure caused by the weight of concrete.
Since p = vh we equate the two pressures and solve for h the height of the concrete slab

3
(62.4) Ibs/ft> x (12— 9) ft = (150) Ibs/ft> x h = h = %(3) f(12) in/ft = 14.976 in ~

water concrete

u
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2.4.3 Bridge Loads

For highway bridges, design loads are given by the AASHTO (Association of American State
Highway Transportation Officials). The HS-20 truck is used for the design of bridges on main
highways, Fig. 6.3. Either the design truck with specified axle loads and spacing must be used
or the equivalent uniform load and concentrated load. This loading must be placed such that
maximum stresses are produced.

}e 14" -0 %{ }e 14" -0 9’&14‘ to 30’%{ 6'- O”#H{ }62' - 0"
8 32 8 32 32

Axle loads
(kips)

H20- Truck HS20- Truck

18k for moment to be positioned
26k for shear for maximum effect
w = 0.64 kips/linear ft of lane

Crb b b bdbdigd

H20 and HS20 Lane

Figure 2.11: Truck Load

2.4.4 Impact Load
2.5 Other Important Considerations

2.5.1 Load Combinations

15 Live loads specified by codes represent the maximum possible loads.

46 The likelihood of all these loads occurring simultaneously is remote. Hence, building codes
allow certain reduction when certain loads are combined together.

47 Furthermore, structures should be designed to resist a combination of loads.

a8 Denoting D= dead; L= live; Lr= roof live; W= wind; E= earthquake; S= snow; T= tem-
perature; H= soil:

19 For the load and resistance factor design (LRFD) method of concrete structures, the Ameri-
can Concrete Institute (ACI) Building design code (318) (318 n.d.) requires that the following
load combinations be considered:

1. 1.4D+1.7L
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Figure 2.12: Load Placement to Maximize Moments

Elastic | Plastic
Behavior Behavior

o

Reserve Load
Capacity

Ultimate /77
load

Plastic
Range

Load

Wind or
E.Q. Load*

[
‘ S -
\ Live Load

Elastic Range of Load

\
\
} Dead Load
\

Deflection

* Only partial or zero live load considered
together with wind or E.Q.load

Figure 2.13: Load Life of a Structure, (Lin and Stotesbury 1981)
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1. The section is part of a beam or girder.

2. The beam or girder is really part of a three dimensional structure in which load is trans-
mitted from any point in the structure to the foundation through any one of various
structural forms.

57 Load transfer in a structure is accomplished through a “hierarchy” of simple flexural ele-
ments which are then connected to the columns, Fig. 2.16 or by two way slabs as illustrated in
Fig. 2.17.

ss An example of load transfer mechanism is shown in Fig. 2.18.
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Two Way Action

2 Z
= —_— —_— +
Z Z
\ \
Flat Plate Slab Two Way Slab
N 7 7
=
_—— _—— - 7
| ZH 1N
Grid Slab

‘ H H ‘ "Waffle Slab”

Flat Slab

Figure 2.17: Two Way Actions
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Chapter 3

STRUCTURAL MATERIALS

1 Proper understanding of structural materials is essential to both structural analysis and to
structural design.

2 Characteristics of the most commonly used structural materials will be highlighted.

3.1 Steel

3.1.1 Structural Steel

3 Steel is an alloy of iron and carbon. Its properties can be greatly varied by altering the
carbon content (always less than 0.5%) or by adding other elements such as silicon, nickle,
manganese and copper.

1 Practically all grades of steel have a Young Modulus equal to 29,000 ksi, density of 490
Ib/cu ft, and a coefficient of thermal expansion equal to 0.65 x 107 /deg F.

5 The yield stress of steel can vary from 40 ksi to 250 ksi. Most commonly used structural steel
are A36 (0,4 = 36 ksi) and A572 (0,4 = 50 ksi), Fig. 3.1

6 Structural steel can be rolled into a wide variety of shapes and sizes. Usually the most
desirable members are those which have a large section moduli (S) in proportion to their area
(A), Fig. 3.2.

7 Steel can be bolted, riveted or welded.

s Sections are designated by the shape of their cross section, their depth and their weight. For
example W 27x 114 is a W section, 27 in. deep weighing 114 1b/ft.

o Common sections are:

S sections were the first ones rolled in America and have a slope on their inside flange surfaces
of 1 to 6.

W or wide flange sections have a much smaller inner slope which facilitates connections and
rivetting. W sections constitute about 50% of the tonnage of rolled structural steel.

C are channel sections

MC Miscellaneous channel which can not be classified as a C shape by dimensions.
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HP is a bearing pile section.
M is a miscellaneous section.
L are angle sections which may have equal or unequal sides.

WT is a T section cut from a W section in two.

10 The section modulus S, of a W section can be roughly approximated by the following formula

d
Sy~ wd/10 or I~ S5~ wd? /20 (3.1)

and the plastic modulus can be approximated by

Zy =~ wd/9 (3.2)

1

=

Properties of structural steel are tabulated in Table 3.1.

ASTM | Shapes Available Use oy (kksi) ou (kksi)
Desig.
A36 Shapes and bars Riveted, bolted, | 36 up through 8 in. (32
welded; Buildings and | above 8.)
bridges
A500 Cold formed welded and | General structural | Grade A: 33; Grade B: 42;
seamless sections; purpose Riveted, | Grade C: 46
welded or bolted;
A501 Hot formed welded and | Bolted and welded 36
seamless sections;
A529 Plates and bars % in and | Building frames and | 42
less thick; trusses; Bolted and
welded
A606 Hot and cold rolled sheets; | Atmospheric corrosion | 45-50
resistant
A611 Cold rolled sheet in cut | Cold formed sections Grade C 33; Grade D 40;
lengths Grade E 80
A 709 Structural shapes, plates | Bridges Grade 36: 36 (to 4 in.);
and bars Grade 50: 50; Grade 100:
100 (to 2.5in.) and 90 (over
2.5 to 4 in.)

Table 3.1: Properties of Major Structural Steels

12 Rolled sections, Fig. 3.3 and welded ones, Fig3.4 have residual stresses. Those originate
during the rolling or fabrication of a member. The member is hot just after rolling or welding,
it cools unevenly because of varying exposure. The area that cool first become stiffer, resist
contraction, and develop compressive stresses. The remaining regions continue to cool and
contract in the plastic condition and develop tensile stresses.

13 Due to those residual stresses, the stress-strain curve of a rolled section exhibits a non-linear
segment prior to the theoretical yielding, Fig. 3.5. This would have important implications on
the flexural and axial strength of beams and columns.
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3.1.2 Reinforcing Steel

14 Steel is also used as reinforcing bars in concrete, Table 3.2. Those bars have a deformation
on their surface to increase the bond with concrete, and usually have a yield stress of 60 ksi'.

Bar Designation | Diameter | Area | Perimeter | Weight
(in.) (in?) in b /ft

No. 2 2/8=0.250 | 0.05 0.79 0.167
No. 3 3/8=0.375 | 0.11 1.18 0.376
No. 4 4/8=0.500 | 0.20 1.57 0.668
No. 5 5/8=0.625 | 0.31 1.96 1.043
No. 6 6/8=0.750 | 0.44 2.36 1.5202
No. 7 7/8=0.875 | 0.60 2.75 2.044
No. 8 8/8=1.000 | 0.79 3.14 2.670
No. 9 9/8=1.128 | 1.00 3.54 3.400
No. 10 10/8=1.270 | 1.27 3.99 4.303
No. 11 11/8=1.410 | 1.56 4.43 5.313
No. 14 14/8=1.693 | 2.25 5.32 7.650
No. 18 18/8=2.257 | 4.00 7.09 13.60

Table 3.2: Properties of Reinforcing Bars

15 Steel loses its strength rapidly above 700 deg. F (and thus must be properly protected from
fire), and becomes brittle at —30 deg. F

16 Steel is also used as wire strands and ropes for suspended roofs, cable-stayed bridges, fabric
roofs and other structural applications. A strand is a helical arrangement of wires around a
central wire. A rope consists of multiple strands helically wound around a central plastic core,
and a modulus of elasticity of 20,000 ksi, and an ultimate strength of 220 ksi.

17 Prestressing Steel cables have an ultimate strength up to 270 ksi.

3.2 Aluminum

18 Aluminum is used whenever light weight combined with strength is an important factor.
Those properties, along with its resistance to corrosion have made it the material of choice
for airplane structures, light roof framing.

19 Aluminum members can be connected by riveting, bolting and to a lesser extent by welding.

20 Aluminum has a modulus of elasticity equal to 10,000 ksi (about three times lower
than steel), a coefficient of thermal expansion of 2.4 x 107° and a density of 173 Ibs/ft>.

21 The ultimate strength of pure aluminum is low (13,000 psi) but with the addition of alloys
it can go up.

1Stirrups which are used as vertical reinforcement to resist shear usually have a yield stress of only 40 ksi.
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s0 Density of normal weight concrete is 145 Ibs/ft3 and 100 Ibs/ft® for lightweight concrete.
s1 Coefficient of thermal expansion is 0.65 x 1075 /deg F for normal weight concrete.

32 When concrete is poured (or rather placed), the free water not needed for the hydration
process evaporates over a period of time and the concrete will shrink. This shrinkage is about
0.05% after one year (strain). Thus if the concrete is restrained, then cracking will occur?.

33 Concrete will also deform with time due to the applied load, this is called creep. This should
be taken into consideration when computing the deflections (which can be up to three times
the instantaneous elastic deflection).

3.4 Masonry

sa Masonry consists of either natural materials, such as stones, or of manufactured products
such as bricks and concrete blocks?, stacked and bonded together with mortar.

35 As for concrete, all modern structural masonry blocks are essentially compression members
with low tensile resistance.

36 The mortar used is a mixture of sand, masonry cement, and either Portland cement or
hydrated lime.

3.5 Timber

37 Timber is one of the earliest construction materials, and one of the few natural materials
with good tensile properties.

ss The properties of timber vary greatly, and the strength is time dependent.

30 Timber is a good shock absorber (many wood structures in Japan have resisted repeated
earthquakes).

10 The most commonly used species of timber in construction are Douglas fir, southern pine,
hemlock and larch.

41 Members can be laminated together under good quality control, and flexural strengths as
high as 2,500 psi can be achieved.

3.6 Steel Section Properties

12 Dimensions and properties of rolled sections are tabulated in the following pages, Fig. 3.7.

3For this reason a minimum amount of reinforcement is always necessary in concrete, and a 2% reinforcement,
can reduce the shrinkage by 75%.
4Mud bricks were used by the Babylonians, stones by the Egyptians, and ice blocks by the Eskimos...
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Designation A d z”t—f; he L | S. I, | s, Za Z,
in? in int in? in* | in® in in®

W 27x539 | 158.0 | 32.52 | 2.2 | 12.3 | 25500 | 1570 | 2110 | 277 | 1880.0 | 437.0
W 27x494 | 145.0 | 31.97 2.3 | 13.4 | 22900 | 1440 | 1890 | 250 | 1710.0 | 394.0
W 27x448 | 131.0 | 31.42 2.5 | 14.7 | 20400 | 1300 | 1670 | 224 | 1530.0 | 351.0
W 27x407 | 119.0 | 30.87 | 2.7 | 15.9 | 18100 | 1170 | 1480 | 200 | 1380.0 | 313.0
W 27x368 | 108.0 | 30.39 3.0 | 17.6 | 16100 | 1060 | 1310 | 179 | 1240.0 | 279.0
W 27x336 98.7 | 30.00 | 3.2 | 19.2 | 14500 970 | 1170 | 161 | 1130.0 | 252.0
W 27x307 90.2 | 29.61 | 3.5 | 20.9 | 13100 884 | 1050 | 146 | 1020.0 | 227.0
W 27x281 82.6 | 29.29 3.7 | 22.9 | 11900 811 953 | 133 933.0 | 206.0
W 27x258 75.7 | 28.98 | 4.0 | 24.7 | 10800 742 859 | 120 850.0 | 187.0
W 27x235 69.1 | 28.66 | 4.4 | 26.6 9660 674 768 | 108 769.0 | 168.0
W 27x217 63.8 | 28.43 4.7 | 29.2 8870 624 704 | 100 708.0 | 154.0
W 27x194 57.0 | 28.11 | 5.2 | 32.3 7820 556 618 88 628.0 | 136.0
W 27x178 52.3 | 27.81 | 5.9 | 334 6990 502 555 79 567.0 | 122.0
W 27x161 47.4 | 27.59 6.5 | 36.7 6280 455 497 71 512.0 | 109.0
W 27x146 429 | 27.38 7.2 | 40.0 5630 411 443 64 461.0 97.5
W 27x129 37.8 | 27.63 | 4.5 | 39.7 4760 345 184 37 395.0 57.6
W 27x114 33.5 | 27.29 | 54 | 42,5 4090 299 159 32 343.0 49.3
W 27x102 30.0 | 27.09 | 6.0 | 47.0 3620 267 139 28 305.0 43.4
W 27x 94 27.7 | 26.92 6.7 | 49.4 3270 243 124 25 278.0 38.8
W 27x 84 24.8 | 26.71 7.8 | 52.7 2850 213 106 21 244.0 33.2
W 24x492 | 144.0 | 29.65 | 2.0 | 10.9 | 19100 | 1290 | 1670 | 237 | 1550.0 | 375.0
W 24x450 | 132.0 | 29.09 2.1 | 11.9 | 17100 | 1170 | 1490 | 214 | 1410.0 | 337.0
W 24x408 | 119.0 | 28.54 | 2.3 | 13.1 | 15100 | 1060 | 1320 | 191 | 1250.0 | 300.0
W 24x370 | 108.0 | 27.99 | 2.5 | 14.2 | 13400 957 | 1160 | 170 | 1120.0 | 267.0
W 24x335 98.4 | 27.52 | 2.7 | 15.6 | 11900 864 | 1030 | 152 | 1020.0 | 238.0
W 24x306 89.8 | 27.13 | 2.9 | 17.1 | 10700 789 919 | 137 922.0 | 214.0
W 24x279 82.0 | 26.73 | 3.2 | 18.6 9600 718 823 | 124 835.0 | 193.0
W 24x250 73.5 | 26.34 3.5 | 20.7 8490 644 724 | 110 744.0 | 171.0
W 24x229 67.2 | 26.02 | 3.8 | 22.5 7650 588 651 99 676.0 | 154.0
W 24x207 60.7 | 25.71 4.1 | 24.8 6820 531 578 89 606.0 | 137.0
W 24x192 56.3 | 25.47 | 44 | 26.6 6260 491 530 82 559.0 | 126.0
W 24x176 51.7 | 25.24 4.8 | 28.7 5680 450 479 74 511.0 | 115.0
W 24x162 47.7 | 25.00 5.3 | 30.6 5170 414 443 68 468.0 | 105.0
W 24x146 43.0 | 24.74 5.9 | 33.2 4580 371 391 60 418.0 93.2
W 24x131 38.5 | 24.48 | 6.7 | 35.6 4020 329 340 53 370.0 81.5
W 24x117 34.4 | 24.26 7.5 | 39.2 3540 291 297 46 327.0 71.4
W 24x104 30.6 | 24.06 8.5 | 43.1 3100 258 259 41 289.0 62.4
W 24x103 30.3 | 24.53 4.6 | 39.2 3000 245 119 26 280.0 41.5
W 24x 94 27.7 | 24.31 5.2 | 41.9 2700 222 109 24 254.0 37.5
W 24x 84 24.7 | 24.10 5.9 | 459 2370 196 94 21 224.0 32.6
W 24x 76 22.4 | 23.92 6.6 | 49.0 2100 176 82 18 200.0 28.6
W 24x 68 20.1 | 23.73 7.7 | 52.0 1830 154 70 16 177.0 24.5
W 24x 62 18.2 | 23.74 6.0 | 50.1 1550 131 34 10 153.0 15.7
W 24x 55 16.2 | 23.57 6.9 | 54.6 1350 114 29 8 134.0 13.3
W 21x402 | 118.0 | 26.02 2.1 | 10.8 | 12200 937 | 1270 | 189 | 1130.0 | 296.0
W 21x364 | 107.0 | 25.47 | 2.3 | 11.8 | 10800 846 | 1120 | 168 | 1010.0 | 263.0
W 21x333 97.9 | 25.00 2.5 | 12.8 9610 769 994 | 151 915.0 | 237.0
W 21x300 88.2 | 24.53 | 2.7 | 14.2 8480 692 873 | 134 816.0 | 210.0
W 21x275 80.8 | 24.13 29 | 154 7620 632 785 | 122 741.0 | 189.0
W 21x248 72.8 | 23.74 3.2 | 17.1 6760 569 694 | 109 663.0 | 169.0
W 21x223 65.4 | 23.35 | 3.5 | 18.8 5950 510 609 96 589.0 | 149.0
W 21x201 59.2 | 23.03 | 3.9 | 20.6 5310 461 542 86 530.0 | 133.0
W 21x182 53.6 | 22.72 4.2 | 22.6 4730 417 483 7 476.0 | 119.0
W 21x166 48.8 | 22.48 4.6 | 24.9 4280 380 435 70 432.0 | 108.0
W 21x147 43.2 | 22.06 | 5.4 | 26.1 3630 329 376 60 373.0 92.6
W 21x132 38.8 | 21.83 6.0 | 28.9 3220 295 333 54 333.0 82.3
W 21x122 35.9 | 21.68 | 6.5 | 31.3 2960 273 305 49 307.0 75.6
W 21x111 32.7 | 21.51 7.1 | 34.1 2670 249 274 44 279.0 68.2

. W L 29.8 | 21.36 7.7 | 37. .
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W 21x 83 24.3 | 21.43 | 5.0 | 36.4 1830 171 81 20 196.0 30.5
W 21x 73 21.5 | 21.24 5.6 | 41.2 1600 151 71 17 172.0 26.6
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Designation | A dlz=| =] L| S| L|s]| z| z
in? in in* | in® in* | in® in? in3

W 14x 74 | 21.8 | 14.17 | 6.4 | 25.3 796 | 112 134 27 | 126.0 40.6
W 14x 68 | 20.0 | 14.04 | 7.0 | 27.5 723 | 103 121 24 | 115.0 36.9
W 14x 61 | 17.9 | 13.89 | 7.7 | 304 640 92 107 22 | 102.0 32.8
W 14x 53 | 15.6 | 13.92 | 6.1 | 30.8 541 78 58 14 87.1 22.0
W 14x 48 | 14.1 | 13.79 | 6.7 | 33.5 485 70 51 13 78.4 19.6
W 14x 43 | 12.6 | 13.66 | 7.5 | 37.4 428 63 45 11 69.6 17.3
W 14x 38 | 11.2 | 14.10 | 6.6 | 39.6 385 55 27 8 61.5 12.1
W 14x 34 | 10.0 | 13.98 | 7.4 | 43.1 340 49 23 7 54.6 10.6
W 14x 30 89 | 13.84 | 8.7 | 454 291 42 20 6 47.3 9.0
W 14x 26 7.7 | 1391 | 6.0 | 48.1 245 35 9 4 40.2 5.5
W 14x 22 6.5 | 13.74 | 7.5 | 53.3 199 29 7 3 33.2 4.4
W 12x336 | 98.8 | 16.82 | 2.3 5.5 | 4060 | 483 | 1190 | 177 | 603.0 | 274.0
W 12x305 | 89.6 | 16.32 | 2.4 6.0 | 3550 | 435 | 1050 | 159 | 537.0 | 244.0
W 12x279 | 81.9 | 15.85 | 2.7 6.3 | 3110 | 393 937 | 143 | 481.0 | 220.0
W 12x252 | 74.1 | 1541 | 2.9 7.0 | 2720 | 353 828 | 127 | 428.0 | 196.0
W 12x230 | 67.7 | 15.05 | 3.1 7.6 | 2420 | 321 742 | 115 | 386.0 | 177.0
W 12x210 | 61.8 | 14.71 | 3.4 8.2 | 2140 | 292 664 | 104 | 348.0 | 159.0
W 12x190 | 55.8 | 14.38 | 3.7 9.2 | 1890 | 263 589 93 | 311.0 | 143.0
W 12x170 | 50.0 | 14.03 | 4.0 | 10.1 | 1650 | 235 517 82 | 275.0 | 126.0
W 12x152 | 44.7 | 13.71 | 4.5 | 11.2 | 1430 | 209 454 73 | 243.0 | 111.0
W 12x136 | 39.9 | 13.41 | 5.0 | 12.3 | 1240 | 186 398 64 | 214.0 98.0
W 12x120 | 35.3 | 13.12 | 5.6 | 13.7 | 1070 | 163 345 56 | 186.0 85.4
W 12x106 | 31.2 | 12.89 | 6.2 | 15.9 933 | 145 301 49 | 164.0 75.1
W 12x 96 | 28.2 | 12.71 | 6.8 | 17.7 833 | 131 270 44 | 147.0 67.5
W 12x 87 | 25.6 | 1253 | 7.5 | 18.9 740 | 118 241 40 | 132.0 60.4
W 12x 79 | 23.2 | 12.38 | 8.2 | 20.7 662 | 107 216 36 | 119.0 54.3
W 12x 72 | 21.1 | 12.25 | 9.0 | 22.6 597 97 195 32 | 108.0 49.2
W 12x 65 | 19.1 | 12.12 | 9.9 | 249 533 88 174 29 96.8 44.1
W 12x 58 | 17.0 | 12.19 | 7.8 | 27.0 475 78 107 21 86.4 32.5
W 12x 53 | 15.6 | 12.06 | 8.7 | 28.1 425 71 96 19 77.9 29.1
W 12x 50 | 14.7 | 12.19 | 6.3 | 26.2 394 65 56 14 72.4 21.4
W 12x 45 | 13.2 | 12.06 | 7.0 | 29.0 350 58 50 12 64.7 19.0
W 12x 40 | 11.8 | 11.94 | 7.8 | 32.9 310 52 44 11 57.5 16.8
W 12x 35 | 10.3 | 12.50 | 6.3 | 36.2 285 46 24 7 51.2 11.5
W 12x 30 88 | 12.34 | 74 | 41.8 238 39 20 6 43.1 9.6
W 12x 26 7.7 | 1222 | 85 | 47.2 204 33 17 5 37.2 8.2
W 12x 22 6.5 | 12.31 | 4.7 | 41.8 156 25 5 2 29.3 3.7
W 12x 19 5.6 | 12.16 | 5.7 | 46.2 130 21 4 2 24.7 3.0
W 12x 16 4.7 | 11.99 | 7.5 | 494 103 17 3 1 20.1 2.3
W 12x 14 4.2 | 11.91 | 8.8 | 54.3 89 15 2 1 174 1.9
W 10x112 | 32.9 | 11.36 | 4.2 | 104 716 | 126 236 45 | 147.0 69.2
W 10x100 | 29.4 | 11.10 | 4.6 | 11.6 623 | 112 207 40 | 130.0 61.0
W 10x 88 | 25.9 | 10.84 | 5.2 | 13.0 534 98 179 35 | 113.0 53.1
W 10x 77 | 22.6 | 10.60 | 5.9 | 14.8 455 86 154 30 97.6 45.9
W 10x 68 | 20.0 | 10.40 | 6.6 | 16.7 394 76 134 26 85.3 40.1
W 10x 60 | 17.6 | 10.22 | 7.4 | 18.7 341 67 116 23 74.6 35.0
W 10x 54 | 15.8 | 10.09 | 8.2 | 21.2 303 60 103 21 66.6 31.3
W 10x 49 | 14.4 9.98 | 8.9 | 23.1 272 55 93 19 60.4 28.3
W 10x 45 | 13.3 | 10.10 | 6.5 | 22.5 248 49 53 13 54.9 20.3
W 10x 39 | 11.5 992 | 7.5 | 25.0 209 42 45 11 46.8 17.2
W 10x 33 9.7 9.73 | 9.1 | 27.1 170 35 37 9 38.8 14.0
W 10x 30 8.8 | 10.47 | 5.7 | 29.5 170 32 17 6 36.6 8.8
W 10x 26 7.6 | 10.33 | 6.6 | 34.0 144 28 14 5 31.3 7.5
W 10x 22 6.5 | 10.17 | 8.0 | 36.9 118 23 11 4 26.0 6.1
W 10x 19 5.6 | 10.24 | 5.1 | 354 96 19 4 2 21.6 3.3
W 10x 17 5.0 | 10.11 | 6.1 | 36.9 82 16 4 2 18.7 2.8
W 10x 15 4.4 9.99 | 7.4 | 38.5 69 14 3 1 16.0 2.3
W 10x 12 3.5 9.87 | 9.4 | 46.6 54 11 2 1 12.6 1.7
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Designation | A | d ;—ff he L| S| 1,] s, Z. | 2,
in? in in? in® in? in® in® in®

C 15.x50 | 14.7 | 15. 0 0 | 404.0 | 53.8 11. | 3.78 8.20 | 8.17
C15x40 | 11.8 | 15. 0 0 | 349.0 | 46.5 | 9.23 | 3.37 | 57.20 | 6.87
C15.x 34 | 10.0 | 15. 0 0 | 315.0 | 42.0 | 813 | 3.11 | 50.40 | 6.23
C 12.x 30 8.8 | 12. 0 0| 162.0 | 27.0 | 5.14 | 2.06 | 33.60 | 4.33
C12.x 25 7.3 | 12. 0 0 | 144.0 | 24.1 | 4.47 | 1.88 | 29.20 | 3.84
C12.x21 6.1 | 12. 0 0] 129.0 | 21.5 | 3.88 | 1.73 | 25.40 | 3.49
C 10.x 30 8.8 | 10. 0 0 | 103.0 | 20.7 | 3.94 | 1.65 | 26.60 | 3.78
C 10.x 25 7.3 | 10. 0 0 91.2 | 18.2 | 3.36 | 1.48 23. | 3.19
C 10.x 20 5.9 | 10. 0 0 789 | 15.8 | 2.81 | 1.32 | 19.30 | 2.71
C10x 15 4.5 | 10. 0 0 67.4 | 13.5 | 2.28 | 1.16 | 15.80 | 2.35
C9.x20 5.9 9. 0 0 60.9 | 13.5 | 2.42 | 1.17 | 16.80 | 2.47
C9x15 4.4 9. 0 0 51.0 | 11.3 | 1.93 | 1.01 | 13.50 | 2.05
C9x13 3.9 9. 0 0 479 | 10.6 | 1.76 | 0.96 | 12.50 | 1.95
C8x19 5.5 8. 0 0 44.0 | 11.0 | 1.98 | 1.01 | 13.80 | 2.17
C8x 14 4.0 8. 0 0 36.1 9.0 | 1.53 | 0.85 | 10.90 | 1.73
C8x 12 3.4 8. 0 0 32.6 81 | 1.32 | 0.78 9.55 | 1.58
C17x15 4.3 7. 0 0 27.2 7.8 | 1.38 | 0.78 9.68 | 1.64
C7x12 3.6 7. 0 0 24.2 6.9 | 1.17 | 0.70 8.40 | 1.43
C7x10 2.9 7. 0 0 21.3 6.1 | 0.97 | 0.63 7.12 | 1.26
C6.x13 3.8 6. 0 0 17.4 5.8 | 1.05 | 0.64 7.26 | 1.36
C6x11 3.1 6. 0 0 15.2 5.1 | 0.87 | 0.56 6.15 | 1.15
C6.x8 2.4 6. 0 0 13.1 4.4 | 0.69 | 0.49 5.13 | 0.99
CbH5x9 2.6 5. 0 0 8.9 3.6 | 0.63 | 0.45 4.36 | 0.92
Cbhx 7 2.0 5. 0 0 7.5 3.0 | 0.48 | 0.38 3.51 | 0.76
C4x7 2.1 4. 0 0 4.6 2.3 | 043 | 0.34 2.81 | 0.70
C4x5 1.6 4. 0 0 3.8 1.9 | 0.32 | 0.28 2.26 | 0.57
C3x6 1.8 3. 0 0 2.1 1.4 | 0.31 | 0.27 1.72 | 0.54
C3x5H 1.5 3. 0 0 1.9 1.2 | 0.25 | 0.23 1.50 | 0.47
C3x4 1.2 3. 0 0 1.7 1.1 | 0.20 | 0.20 1.30 | 0.40
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Designation A wgt I, Sz I, Sy Ly Zy
in? | k/ft | in* | in? int | in n in
L 5.0x5.0x0.875 | 7.98 | 27.20 | 17.8 | 5.2 | 17.80 | 5.17 | 9.33 | 9.33
L 5.0x5.0x0.750 | 6.94 | 23.60 | 15.7 | 4.5 | 15.70 | 4.53 | 8.16 | 8.16
L 5.0x5.0x0.625 | 5.86 | 20.00 | 13.6 | 3.9 | 13.60 | 3.86 | 6.95 | 6.95
L 5.0x5.0x0.500 | 4.75 | 16.20 | 11.3 | 3.2 | 11.30 | 3.16 | 5.68 | 5.68
L 5.0x5.0x0.438 | 4.18 | 14.30 | 10.0 | 2.8 | 10.00 | 2.79 | 5.03 | 5.03
L 5.0x5.0x0.375 | 3.61 | 12.30 87 | 2.4 8.74 | 2.42 | 4.36 | 4.36
L 5.0x5.0x0.313 | 3.03 | 10.30 7.4 | 2.0 7.42 | 2.04 | 3.68 | 3.68
L 5.0x3.5x0.750 | 5.81 | 19.80 | 13.9 | 4.3 5.55 | 2.22 | 7.65 | 4.10
L 5.0x3.5x0.625 | 4.92 | 16.80 | 12.0 | 3.7 4.83 | 1.90 | 6.55 | 3.47
L 5.0x3.5x0.500 | 4.00 | 13.60 | 10.0 | 3.0 4.05 | 1.56 | 5.38 | 2.83
L 5.0x3.5x0.438 | 3.53 | 12.00 89 | 2.6 3.63 | 1.39 | 4.77 | 2.49
L 5.0x3.5x0.375 | 3.05 | 10.40 7.8 | 2.3 3.18 | 1.21 | 4.14 | 2.16
L 5.0x3.5x0.313 | 2.56 8.70 6.6 | 1.9 2.72 1 1.02 | 3.49 | 1.82
L 5.0x3.5x0.250 | 2.06 7.00 54 | 1.6 2.23 | 0.83 | 2.83 | 1.47
L 5.0x3.0x0.625 | 4.61 | 15.70 | 11.4 | 3.5 3.06 | 1.39 | 6.27 | 2.61
L 5.0x3.0x0.500 | 3.75 | 12.80 94 | 2.9 2.58 | 1.15 | 5.16 | 2.11
L 5.0x3.0x0.438 | 3.31 | 11.30 84 | 2.6 2.32 | 1.02 | 4.57 | 1.86
L 5.0x3.0x0.375 | 2.86 9.80 7.4 | 2.2 2.04 | 0.89 | 3.97 | 1.60
L 5.0x3.0x0.313 | 2.40 8.20 6.3 | 1.9 1.75 | 0.75 | 3.36 | 1.35
L 5.0x3.0x0.250 | 1.94 6.60 5.1 1.5 1.44 | 0.61 | 2.72 | 1.09
L 4.0x4.0x0.750 | 5.44 | 18.50 7.7 | 2.8 7.67 | 2.81 | 5.07 | 5.07
L 4.0x4.0x0.625 | 4.61 | 15.70 6.7 | 24 6.66 | 2.40 | 4.33 | 4.33
L 4.0x4.0x0.500 | 3.75 | 12.80 5.6 | 2.0 5.56 | 1.97 | 3.56 | 3.56
L 4.0x4.0x0.438 | 3.31 | 11.30 5.0 | 1.8 4.97 | 1.75 | 3.16 | 3.16
L 4.0x4.0x0.375 | 2.86 9.80 4.4 | 1.5 4.36 | 1.52 | 2.74 | 2.74
L 4.0x4.0x0.313 | 2.40 8.20 3.7 1.3 3.71 | 1.29 | 2.32 | 2.32
L 4.0x4.0x0.250 | 1.94 6.60 3.0 1.0 3.04 | 1.05 | 1.88 | 1.88
L 4.0x3.5x0.500 | 3.50 | 11.90 5.3 | 1.9 3.79 | 1.52 | 3.50 | 2.73
L 4.0x3.5x0.438 | 3.09 | 10.60 4.8 | 1.7 3.40 | 1.35 | 3.11 | 2.42
L 4.0x3.5x0.375 | 2.67 9.10 42 | 1.5 2.95 | 1.16 | 2.71 | 2.11
L 4.0x3.5x0.313 | 2.25 7.70 3.6 | 1.3 2.55 | 0.99 | 2.29 | 1.78
L 4.0x3.5x0.250 | 1.81 6.20 29 | 1.0 2.09 | 0.81 | 1.86 | 1.44
L 4.0x3.0x0.500 | 3.25 | 11.10 5.1 | 1.9 242 | 1.12 | 3.41 | 2.03
L 4.0x3.0x0.438 | 2.87 9.80 4.5 | 1.7 2.18 | 0.99 | 3.03 | 1.79

Victor Saouma Structural Concepts and Systems for Architects



3.7 Joists 73

3.7 Joists

13 Steel joists, Fig. 3.8 look like shallow trusses (warren type) and are designed as simply
supported uniformly loaded beams assuming that they are laterally supported on the top (to
prevent lateral torsional buckling). The lateral support is often profided by the concrete slab
it suppors.

12 The standard open-web joist designation consists of the depth, the series designation and
the chord type. Three series are available for floor/roof construction, Table 3.3

Series | Depth (in) | Span (ft)
K |830 8-60
LH | 18-48 25-96
DLH | 52-72 89-120

Table 3.3: Joist Series Characteristics

(‘14 £¢°0 - upds = yibue ubiseq)

i Avavavas =1

A4

uodg

Figure 3.8: prefabricated Steel Joists

15 Typical joist spacing ranges from 2 to 4 ft, and provides an efficient use of the corrugated
steel deck which itself supports the concrete slab.

46 For preliminary estimates of the joist depth, a depth to span ratio of 24 can be assumed,
therefore

d~L/2 (3.5)

where d is in inches, and L in ft.

a7 Table 3.4 list the load carrying capacity of open web, K-series steel joists based on a amxi-
mum allowable stress of 30 ksi. For each span, the first line indicates the total safe uniformly
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Joint |8K1 [|10K1|12K112K3 12K 5| 14K1 14K 3 14K414K6|16K2 16 K3 16 K4 16 K5 16 K6 16 K7 16 K9

Desig
Depth 8 10 |12 |12 |12 || 14 |14 |14 |14 || 16 |16 |16 | 16 | 16 | 16 | 16
(in.)
a2 511 5 5 57711 526 6.7 | 7.7 55637 75| 81| 86 | 10.0
W
(Ibs/ft)
Span
(ft.
8 550
550
9 550
550
10 550 | 550
480 550
11 532 550
377 542

12 444 550 550 | 550 | 550
288 || 455 550| 550 | 550
13 377 479 550 | 550 | 550
225 || 363 510| 510 510
14 324 412]| 500| 550| 550 550| 550 | 550 | 550
179 289 425| 463 | 463 || 550 | 550 | 550 | 550
15 281 358 434| 543| 550 511| 550 | 550 | 550
145 234 || 344 | 428 434 || 475| 507 | 507 | 507
16 246 || 313|| 380 | 476| 550 448| 550| 550 | 550 || 550 | 550 | 550 | 550 | 550 | 550 | 550
119 192 282| 351 | 396 || 390 | 467 | 467 | 467 | 550 | 550 | 550 | 550 | 550 | 550 | 550

17 2771 336| 420| 550 || 395| 495| 550 | 550 || 512 | 550 | 550 | 550 | 550 | 550 | 550
159 234| 291 | 366 || 324 | 404 | 443 | 443 | 488 526 | 526 | 526 | 526 | 526 | 526

18 246 | 299| 374 | 507 || 352| 441 | 530 | 550 || 456 | 508 | 550 | 550 | 550 | 550 | 550
134 197| 245| 317 || 272| 339 | 397 | 408 | 409 | 456 | 490 | 490 | 490 | 490 | 490

19 221 268| 335| 454 || 315| 395| 475| 550 || 408 | 455| 547 | 550| 550 | 550 | 550
113 167 | 207 | 269 || 230 | 287 | 336 | 383 | 347 | 386 | 452 | 455| 455 | 455 | 455

20 199 || 241 | 302 | 409 || 284 | 356 | 428 | 525 368 | 410| 493 | 550 | 550 | 550 | 550
97 || 142 177| 230|| 197 | 246 | 287 | 347 || 297 | 330 | 386 | 426 | 426 | 426 | 426

21 218| 273 | 370 || 257 | 322| 388 | 475|| 333 | 371 | 447| 503 | 548 | 550 | 550
123 | 153 | 198| 170| 212| 248 | 299 || 255| 285 | 333 | 373 | 405 | 406 | 406

22 199 249 | 337|| 234 | 293 | 353 | 432 303 | 337 | 406 | 458 | 498 | 550 | 550
106 | 132 172 147| 184 | 215| 259 222| 247 | 289 | 323 | 351 | 385| 385

23 181 227 308| 214 | 268| 322 | 395 277 | 308 | 371 | 418| 455 | 507 | 550
93 | 116| 150|| 128| 160 | 188| 226 || 194 | 216 | 252| 282 | 307 | 339 | 363

24 166 | 208 | 282 196 | 245| 295| 362 254 | 283 | 340 | 384 | 418 | 465 | 550
81 | 101 | 132 113| 141 | 165| 199 || 170 | 189 | 221 | 248 | 269 | 298 | 346

25 180| 226 | 272| 334 || 234| 260 | 313 | 353 | 384| 428 | 514
100| 124 | 145| 175|| 150 | 167 | 195| 219| 238| 263 | 311

26 166 | 209| 251 | 308 || 216| 240 | 289 | 326 | 355| 395 | 474
88 | 110| 129| 56 || 133 | 148| 173 | 194| 211 | 233| 276

27 154| 193 | 233| 285 200 | 223 | 268| 302 | 329| 366 | 439
79 | 98 | 115| 139 119| 132| 155| 173 | 188 | 208 | 246

28 143 | 180 | 216| 265 || 186 | 207 | 249| 281 | 306| 340 | 408
70 | 88 | 103| 124 106 | 118 | 138| 155| 168 | 186 | 220

29 173| 193 | 232| 261 | 285| 317 | 380
95 | 106| 124 | 139| 151| 167 | 198

30 161| 180 | 216| 244 | 266 | 296 | 355
86 | 96 | 112| 126| 137| 151 | 178

31 151 | 168 | 203 | 228 | 249 | 277 | 332
78 | 87 | 101 | 114| 124 | 137| 161

32 142 158 | 190| 214| 233 | 259| 311

71|79 | 92 | 103 | 112| 124 | 147
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Chapter 4

Case Study I: EIFFEL TOWER

Adapted from (Billington and Mark 1983)

4.1 Materials, & Geometry

1 The tower was built out of wrought iron, less expensive than steel,and Eiffel had more ex-
pereince with this material, Fig. 4.1
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Figure 4.1: Eiffel Tower (Billington and Mark 1983)
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Width
Location Height | Width/2 | Estimated | Actual g—g I}
Support 0 164 328 333 | 18.4°
First platform 186 108 216 240 270 | 15.1°
second platform 380 62 123 110 205 | 11.6°
Intermediate platform 644 20 40 115 | 6.6°
Top platform 906 1 2 0264 | 1.5°
Top 984 0 0 0.000 | 0°

4+ The tower is supported by four inclined supports, each with a cross section of 800 in?. An
idealization of the tower is shown in Fig. 4.2.

ACTUAL
CONNECTION IDEALIZED
CONTINUOUS
CCONNECTION

ACTUAL
POINTS OF
CCONNECTION

Figure 4.2: Eiffel Tower Idealization, (Billington and Mark 1983)

4.2 Loads

5 The total weight of the tower is 18,800 k.

6 The dead load is not uniformly distributed, and is approximated as follows, Fig. 4.3:

- Q@ «llocok

> Q2200 K

b Qe 15,500 K.

Figure 4.3: Eiffel Tower, Dead Load Idealization; (Billington and Mark 1983)
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81
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Figure 4.5: Eiffel Tower, Wind Loads, (Billington and Mark 1983)
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Figure 4.6: Eiffel Tower, Reactions; (Billington and Mark 1983)
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p=18.4"
INCLINED
INTERNAL
FORCE: N
T
L KNOWN VERTICAL
H | COMPONENT.V

Figure 4.7: Eiffel Tower, Internal Gravity Forces; (Billington and Mark 1983)

12 Gravity load are first considered, remember those are caused by the dead load and the live
load, Fig. 4.7:

V V
= — = N-= 4.12-
cos N = cos B ( a)
N = w =111,730 ki (4.12-b)
~ cos1840 L P o
H
tanf = v H =Vtanp (4.12-c)

H = 11,140 k(tan 18.4°) = 3,700 kip (4.12-d)

The horizontal forces which must be resisted by the foundations, Fig. 4.8.

H H
_> 4_
3700 k 3700 k

Figure 4.8: Eiffel Tower, Horizontal Reactions; (Billington and Mark 1983)

13 Because the vertical load decreases with height, the axial force will also decrease with height.

14 At the second platform, the total vertical load is Q = 1,100 + 2,200 = 3,300 k and at that
height the angle is 11.6° thus the axial force (per pair of columns) will be

3,300 k
N = 2 1 k 4.13-
vert cos 11.6° , 685 (4.13-)
3,300 k
H,. = - 5 (tan11.6°) = 339 k (4.13-b)

Note that this is about seven times smaller than the axial force at the base, which for a given
axial strength, would lead the designer to reduce (or taper) the cross-section.
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Chapter 5

REVIEW of STATICS

To every action there is an equal
and opposite reaction.

Newton’s third law of motion

5.1 Reactions

1 In the analysis of structures (hand calculations), it is often easier (but not always necessary)
to start by determining the reactions.

2 Once the reactions are determined, internal forces are determined next; finally, internal
stresses and/or deformations (deflections and rotations) are determined last'.

3 Reactions are necessary to determine foundation load.

1 Depending on the type of structures, there can be different types of support conditions, Fig.
5.1.

Roller: provides a restraint in only one direction in a 2D structure, in 3D structures a roller
may provide restraint in one or two directions. A roller will allow rotation.

Hinge: allows rotation but no displacements.

Fixed Support: will prevent rotation and displacements in all directions.

5.1.1 Equilibrium

5 Reactions are determined from the appropriate equations of static equilibrium.

¢ Summation of forces and moments, in a static system must be equal to zero®.

!This is the sequence of operations in the flexibility method which lends itself to hand calculation. In the
stiffness method, we determine displacements firsts, then internal forces and reactions. This method is most
suitable to computer implementation.

2In a dynamic system XF = ma where m is the mass and a is the acceleration.
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Structure Type Equations
Beam, no axial forces XF, M,
2D Truss, Frame, Beam YF, YF, XM,
Grid YF, XM, XM,
3D Truss, Frame YF, YFy YF, XM, XM, XM,
Alternate Set
Beams, no axial Force M4 YMP
2 D Truss, Frame, Beam | ©F, M7 YMP
YMA YMPB YM?¢

Table 5.1: Equations of Equilibrium

2. Assume a direction for the unknown quantities
3. The right hand side of the equation should be zero

If your reaction is negative, then it will be in a direction opposite from the one assumed.

16 Summation of external forces is equal and opposite to the internal ones. Thus the net
force/moment is equal to zero.

17 The external forces give rise to the (non-zero) shear and moment diagram.

5.1.2 Equations of Conditions

18 If a structure has an internal hinge (which may connect two or more substructures), then
this will provide an additional equation (XM = 0 at the hinge) which can be exploited to
determine the reactions.

19 Those equations are often exploited in trusses (where each connection is a hinge) to determine
reactions.

20 In an inclined roller support with S, and S, horizontal and vertical projection, then the
reaction R would have, Fig. 5.2.

Sy
- = —Z 5.3

Figure 5.2: Inclined Roller Support
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Figure 5.4: Geometric Instability Caused by Concurrent Reactions

5.1.5 Examples

20 Examples of reaction calculation will be shown next. Each example has been carefully
selected as it brings a different “twist” from the preceding one. Some of those same problems
will be revisited later for the determination of the internal forces and/or deflections. Many of
those problems are taken from Prof. Gerstle textbok Basic Structural Analysis.

B Example 5-1: Simply Supported Beam

Determine the reactions of the simply supported beam shown below.

k
60 4 K/f

365 d

; b C %97

Solution:
The beam has 3 reactions, we have 3 equations of static equilibrium, hence it is statically
determinate.

(++)XF,=0; = Rup—36k=0
(+4)XF,=0; = Rgay+ Rgy —60k—(4) k/ft(12) ft =0
(+9)XM:=0; = 12R4 — 6Rgy, — (60)(6) =0

or through matrix inversion (on your calculator)

10 0 Rz 36 Rz 36 k
01 1 Ray p=2 108 3 =< Ry =14 56k
0 12 =6 | | Ray 360 Ray 52 k

Alternatively we could have used another set of equations:

(+20) M2 =0; (60)(6)+ (48)(12) — (R4y)(18) =0 = Ry, =|52 k't
(+9) M =0; (Ray)(18) — (60)(12) — (48)(6) =0 = Ry =56 kt
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2. Isolating bd:
(+9)XMy=0; —(17.7)(18) — (40)(15) — (4)(8)(8) — (30)(2) + R¢y(12) =0
1,2

(+20)EM, = 0; —(17.7)(6) — (40)(3) + (4)(8)(4) + (30)(10) — Rqy(12) = 0
201.3

3. Check
YF, =0; 4;22.2—-40—-40+ 103 — 32 - 30+ 16.7 = 0/

B Example 5-3: Three Hinged Gable Frame

The three-hinged gable frames spaced at 30 ft. on center. Determine the reactions compo-
nents on the frame due to: 1) Roof dead load, of 20 psf of roof area; 2) Snow load, of 30 psf
of horizontal projection; 3) Wind load of 15 psf of vertical projection. Determine the critical
design values for the vertical and horizontal reactions.

20’

60"

Solution:

1. Due to symmetry, we will consider only the dead load on one side of the frame.
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5.2 Trusses

5.2.1 Assumptions
30 Cables and trusses are 2D or 3D structures composed of an assemblage of simple one dimen-
sional components which transfer only axial forces along their axis.
31 Trusses are extensively used for bridges, long span roofs, electric tower, space structures.
32 For trusses, it is assumed that
1. Bars are pin-connected
2. Joints are frictionless hinges®.
3. Loads are applied at the joints only.
33 A truss would typically be composed of triangular elements with the bars on the upper

chord under compression and those along the lower chord under tension. Depending on the
orientation of the diagonals, they can be under either tension or compression.

sa In a truss analysis or design, we seek to determine the internal force along each member,

Fig. 5.5
Top Chord /
‘ Bracing (not

shown 1n all
panels)

Diagonal
Stringer

Floor Beam

Figure 5.5: Bridge Truss

5.2.2 Basic Relations
Sign Convention: Tension positive, compression negative. On a truss the axial forces are
indicated as forces acting on the joints.

Stress-Force: o = %

Stress-Strain: o = Fe

Force-Displacement: ¢ = %

4In practice the bars are riveted, bolted, or welded directly to each other or to gusset plates, thus the bars
are not free to rotate and so-called secondary bending moments are developed at the bars. Another source
of secondary moments is the dead weight of the element.
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Figure 5.6: A Statically Indeterminate Truss

3. Sketch a free body diagram showing all joint loads (including reactions)

4. For each joint, and starting with the loaded ones, apply the appropriate equations of
equilibrium (X F, and ¥Fy in 2D; ¥ F,, ¥F, and XF, in 3D).

5. Because truss elements can only carry axial forces, the resultant force (ﬁ = F, +F_’;,) must
be along the member, Fig. 5.7.

F F,
z _ v 5.4
z L (5.4)

a1 Always keep track of the z and y components of a member force (Fy, Fy), as those might be
needed later on when considering the force equilibrium at another joint to which the member
is connected.

Figure 5.7: X and Y Components of Truss Forces

45 This method should be used when all member forces should be determined.

46 In truss analysis, there is no sign convention. A member is assumed to be under tension
(or compression). If after analysis, the force is found to be negative, then this would imply that
the wrong assumption was made, and that the member should have been under compression
(or tension).
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Node A: Clearly AH is under compression, and AB under tension.

(+4)0F, =0; = Fag, —58=0
FAH:é<FAHy)

l, = 32 | = /322 + 242 = 40
= Fag = 29(58) = 72.5 Compression
(+)SF,=0; = —Fap, +Fap=0
Fap = (Fan,) = 2(58) = 43.5 Tension
Node B:
%EH
43.5&1? P
20
(++)¥XF,=0; = Fpc = 43.5 Tension
(+4)XF,=0; = Fpy = 20 Tension
Node H:
12
F
HCx F]HG

/\%
e
. He /FHCX '

A/Hyﬁ/ \XFHCY
7257

FAHX
20

(+-)XF,=0;, = Fag, — Fyc, — Fug, =0
435 — ot (Fre) = g g (Fiig) = 0 @
(-i-*)EFy:O; = FAHy+FHCy _12_FHGy —20=0
B8 + iy (Frc) =12 — s (Fe) =20 =0 (1)
Solving for I and II we obtain

Fryce = —7.5 Tension
Frg = 52 Compression
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HRN

+ve Load + Axial Force
+ve Shear +ve Moment

Figure 5.9: Shear and Moment Sign Conventions for Design

Load Positive along the beam’s local y axis (assuming a right hand side convention),
that is positive upward.

Axial: tension positive.

Flexure A positive moment is one which causes tension in the lower fibers, and compres-
sion in the upper ones. For frame members, a positive moment is one which causes
tension along the inner side.

Shear A positive shear force is one which is “up” on a negative face, or “down” on
a positive one. Alternatively, a pair of positive shear forces will cause clockwise
rotation.

Torsion Counterclockwise positive

3D: Use double arrow vectors (and NOT curved arrows). Forces and moments (including
torsions) are defined with respect to a right hand gfde coordinate system, Fig. 5.10.

Figure 5.10"Sign Comventions for 3D Frame Elements

5.3.1.2 Load, Shear, Moment Relations

s0 Let us (re)derive the basic relations between load, shear and moment. Considering an in-
finitesimal length dz of a beam subjected to a positive load® w(z), Fig. 5.11. The infinitesimal
section must also be in equilibrium.

51 There are no axial forces, thus we only have two equations of equilibrium to satisfy X F, = 0
and XM, = 0.

52 Since dz is infinitesimally small, the small variation in load along it can be neglected, therefore
we assume w(z) to be constant along dz.

5Tn this derivation, as in all other ones we should assume all quantities to be positive.
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The change in moment between 1 and 2, AM>;, is equal to the area under
the shear curve between x; and xs.

57 Note that we still need to have V] and M; in order to obtain V5 and Ms respectively.

ss Fig. 5.12 and 5.13 further illustrates the variation in internal shear and moment under
uniform and concentrated forces/moment.

p

P ——

L LI

@ ® Q@ ®

Wy P \
My My dM, Mg I MydM, My l My My \ My
Vy Ve -dVy Ty Ve +dVy Vg Ve Ve Vy

Y Y e e
@ @ ©) @

Figure 5.12: Shear and Moment Forces at Different Sections of a Loaded Beam

Positive Constant ~ Negative Constant ~ Positive Increasing Positive Decreasing Negative Increasing Negative Decreasing

“ == ===

Positive Constant ~ Negative Constant  Positive Increasing Positive Decreasing Negative Increasing Negative Decreasing

- =
T T

Moment

Figure 5.13: Slope Relations Between Load Intensity and Shear, or Between Shear and Moment
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B Kips o yipe/t

11 kips \
4 6 klPS>\V
6 kips
{ Shear forces at
13 kips Point B 14 kips
) 1=} 1= B
13 13 22 i T%? i
13 + Shear —J —
13105t Point A 22 66
e o -y
13 ki
Pe  gei A--4(6+14)/2--40
- 2 kips
ot
A-(13)(4)-52 6 kips i
A=(6)(2)-12 A=(-6)(4)--24 dViM kips
S}lope:&:W:*Z
a a
b TN 64 kip-tt A
52 kip-ft 0 kip-ft  dM_ .
M:qg gy varies
dx 'Y X .
from -6 to -14
O\ T T T !
A B C D E
s
o Ve

Reactions are determined from the equilibrium equations

(+ ¥TF;=0; = —R4,+6=0= Ry, =6k
(+9)SMa=0; = (11)(4) + (8)(10) + (4)(2)(14+2) — Rp,(18) =0 = Rp, = 14 k
(+4)SF,=0; = Ry, —11-8—(4)(2)+14=0= Ry, =13k

Shear are determined next.

1. At A the shear is equal to the reaction and is positive.

2. At B the shear drops (negative load) by 11 k to 2 k.

3. At C it drops again by 8 k to —6 k.

4. Tt stays constant up to D and then it decreases (constant negative slope since the
load is uniform and negative) by 2 k per linear foot up to —14 k.

5. As a check, —14 k is also the reaction previously determined at F'.
Moment is determined last:

1. The moment at A is zero (hinge support).

2. The change in moment between A and B is equal to the area under the corresponding
shear diagram, or AMp_4 = (13)(4) = 52.
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64.06 36
ﬁ)m 139.8 (ﬂ

ﬁ ﬂ/ 42.37
36%%4 06 13.22°%,

36 3k/ft 36 230,

o Ly g0 880 )
S T =) 432 7764.061801-139.8

64.06-3(30)-25.96
TN36)(12) =432 ~139.8
B 3(15)-31.78-13.22
36—~ 1A 9 D
6406 5102.96)-31.78 /ﬁg@a%mz.g
64.06 52 06
42.3
k ” \Q
64. 06
N 13.22
25.96
%) Shear Diagram
31.78
432 32

139.8
Moment Diagram
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3. If we need to determine the maximum moment along B—C', we know that d]\ifr =< =0

at the point where Vp_¢ = 0, that is Vp_¢(x) = 64.06 — 3z = 0 = o = &306 =
25.0 ft. In other words, maximum moment occurs where the shear is zero.
Thus MpE% = —432 4+ 64.06(25.0) — 3@ = —432+1,601.5 — 937.5 = 232 k.ft

4. Finally along C'— D, the moment varies quadratically (since we had a linear shear),
the moment first increases (positive shear), and then decreases (negative shear). The
moment along C' — D is given by

Mc-p = Mc+ [y VC_D(az)d:g =139.8 4 [ (13.22 — 3z)dx
= 139.8 + 13.22z — 3%

which is a parabola.

Substituting for z = 15, we obtain at node C' M¢ = 139.8 + 13.22(15) — 3% =
139.8 +198.3 — 337.5 = 04/

B Example 5-7: Frame Shear and Moment Diagram; Hydrostatic Load

The frame shown below is the structural support of a flume. Assuming that the frames are
spaced 2 ft apart along the length of the flume,

1. Determine all internal member end actions
2. Draw the shear and moment diagrams
3. Locate and compute maximum internal bending moments

4. If this is a reinforced concrete frame, show the location of the reinforcement.

Density of water-62.4 1b/ft?
H,0 g

Spacing of frames=2 ft.

B—1r A?E

10 ft. ‘ 3 ft.
i

Solution:

The hydrostatic pressure causes lateral forces on the vertical members which can be treated
as cantilevers fixed at the lower end.
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1. Base at B the shear force was determined earlier and was equal to 2.246 k. Based
on the orientation of the x — y axis, this is a negative shear.

2. The vertical shear at B is zero (neglecting the weight of A — B)
3. The shear to the left of C'is V =0+ (—.749)(3) = —2.246 k.
4. The shear to the right of C'is V = —2.246 + 5.99 = 3.744 k

Moment diagrams

1. At the base: B M = 4.493 k.ft as determined above.

2. At the support C, M, = —4.493 + (—.749)(3)(2) = —7.864 k.ft

3. The maximum moment is equal to My,q, = —7.864 + (.749)(5)(3) = 1.50 k.ft
Design: Reinforcement should be placed along the fibers which are under tension, that is on

the side of the negative moment”. The figure below schematically illustrates the location
of the flexural® reinforcement.

A [

Bﬁg% g !

B Example 5-8: Shear Moment Diagrams for Frame

"That is why in most European countries, the sign convention for design moments is the opposite of the one
commonly used in the U.S.A.; Reinforcement should be placed where the moment is “postive”.
8Shear reinforcement is made of a series of vertical stirrups.
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B Example 5-9: Shear Moment Diagrams for Inclined Frame

b s 20 My
Va‘ ' ‘
N 19.2k 48,8k
S g
TN 8 po0k l
S S — 20k =
Ni * 20k§ ) g /\‘
g = ;) Ok
= g ES
e e %
2k/ft 60k ~
| 60k | ! ! F/Fy=z/x
T AB 3 ED T P F/Fx=z/y
1 92k ’T‘: ! Fx/Fy:y/x
2
26k, (20)(15)/13=7.7

(20)(12)/(13)=18.46
(19.2)(5)/(13)=7.38
(19.2)(12)/(13)=17.72
(26)(12)/(13)=24
(26.6)(13)/(12)=28.8

\'Ifl)f’lgk 2-
25 o 4 (26.6)(5)/(12)=11.1
,9.3%\‘26 e 7 —1(28.8)(4)/(5)=23.1

. 2

il (28.8)(3)/(5)=17.28
1,130-(.58)(13) , X 5| & _
800+(25.4)(13) ,\‘\\27‘\‘/ 71 5/|= CO@/5)=16
1130 alls (20)3)/(5)=12
VS liE (39.1)(5)/(4)=48.9
9B-C (39.1)(3)/(4)=29.3
= 14] ax 77K

+60k
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where y is measured from the axis of rotation (neutral axis). Thus strains are proportional to
the distance from the neutral axis.

61 p (Greek letter rho) is the radius of curvature. In some textbook, the curvature s (Greek
letter kappa) is also used where

1
K= - 5.14
P (5.14)
thus,
S—— (5.15)

5.4.2 Stress-Strain Relations

65 S0 far we considered the kinematic of the beam, yet later on we will need to consider equi-
librium in terms of the stresses. Hence we need to relate strain to stress.

66 For linear elastic material Hooke’s law states

0y = Fey (5.16)

where E is Young’s Modulus.

o7 Combining Eq. with equation 5.15 we obtain

00 = —Eny (5.17)

5.4.3 Internal Equilibrium; Section Properties

6s Just as external forces acting on a structure must be in equilibrium, the internal forces must
also satisfy the equilibrium equations.

eo The internal forces are determined by slicing the beam. The internal forces on the “cut”
section must be in equilibrium with the external forces.

5.4.3.1 XF, =0; Neutral Axis

70 The first equation we consider is the summation of axial forces.

71 Since there are no external axial forces (unlike a column or a beam-column), the internal
axial forces must be in equilibrium.

SF, = 0= / opdA =0 (5.18)
A
where o, was given by Eq. 5.17, substituting we obtain

/ 0xdA = —/ ErydA =0 (5.19-a)
A A

Victor Saouma Structural Concepts and Systems for Architects



5.4 Flexure 115
Y
X A = bh A = bh—VHN
v = b v = b
h h
h X y = 3 y = 3
I, = % I bh3bws
ly s hlb23 c hb? 1%’&;/3
I, hbe Iy = T
b
Y
a A bh
_ b+c
A = Matb) o=y
h(Za+b
" Xy = g X =t
y _ Rh3(a®+4ab+b?
2 o= 36(atb) I, = %(Z)Q—I)c—i-c2
b
Y
X 4= p2=nd A = 2mrt=n
L=1, = % =% L=1, = mr't="g!
Y
[b A = mab
g L=
_  wba?
5, = ¢
a a

Table 5.3: Section Properties
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5. We now set those two values equal to their respective maximum

L (20) £6(12) in/ft  65.65 ,/65.65 ,
Amaac = = =U. = = —— =4.61 1-
360 360 0.67 in 3= 067 61(@.31-a)
764 764
Omea = (18)ksi=—5 = r=/7= = (5.31-b)

5.4.5 Approximate Analysis

so From Fig. 5.14, and Eq. 5.25 (% =K = %), we recall that that the moment is directly

proportional to the curvature k.
g1 Thus,

1. A positive and negative moment would correspond to positive and negative curvature
respectively (adopting the sign convention shown in Fig. 5.14).

2. A zero moment correspnds to an inflection point in the deflected shape.

s2 Hence, for

Statically determinate structure, we can determine the deflected shape from the moment
diagram, Fig. 5.15.

Statically indeterminate structure, we can:
1. Plot the deflected shape.

2. Identify inflection points, approximate their location.

3. Locate those inflection points on the structure, which will then become statically
determinate.

4. Perform an approximate analysis.

B Example 5-11: Approximate Analysis of a Statically Indeterminate beam

Perform an approximate analysis of the following beam, and compare your results with the
exact solution.

| 20k
VAN O O
16" _12° 28"
28’
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Figure 5.16: Approximate Analysis of Beams
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6. Check

(+9) M4 =0; (20)(16) — (Rc)(28) + (Rp)(28 + 28) =
320 — (17.67)(28) + (3.12)(56) =

320 — 494.76 + 174.72 = 0,/ (5.34-a)

7. The moments are determined next
Mpae = Ruaa= (5.45)(16) = (5.35-a)
M, = RpL=(3.12)(28) =|87.36 (5.35-b)

8. We now compare with the exact solution from Section 77, solution 21 where:L = 28,
a=16,b=12, and P =20

Pb

Ri=Ri = 3 [4L2 —a(L + a)}
— G (1087 - a0)s + 16)] = (5.36-2)
Ry = Rp = % [2L2 +b(L + a)] (5.36-b)
_ _(3((2;1)2) [2(28) 4 12(28 + 16)] = (5.36-c)
Ry=Rp = ~2o(L+a) (5.36-d)
- _%(% +16) = (5.36-¢)
Mpae = Ria=(6.64)(16) = (5.36-f)
M; = RsL = (1.92)(28) =[53.8 (5.36-g)

9. If we tabulate the results we have

Value | Approximate | Exact | % Error
Ry 5.45 6.64 18
Ro 17.67 15.28 -16
Rp 3.12 1.92 63
M, 87.36 53.8 62
Moz | 87.2 106.2 18

10. Whereas the correlation between the approximate and exact results is quite poor, one
should not underestimate the simplicity of this method keeping in mind (an exact analysis
of this structure would have been computationally much more involved). Furthermore,
often one only needs a rough order of magnitude of the moments.
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Chapter 6

Case Study II: GEORGE
WASHINGTON BRIDGE

6.1 Theory

1 Whereas the forces in a cable can be determined from statics alone, its configuration must
be derived from its deformation. Let us consider a cable with distributed load p(z) per unit

horizontal projection of the cable length (thus neglecting the weight of the cable). An

infinitesimal portion of that cable can be assumed to be a straight line, Fig. 6.1 and in the
absence of any horizontal load we have H =constant. Summation of the vertical forces yields
(+1)SF, =0= -V +wdz+ (V+dV) = 0 (6.1-a)

dV +wder = 0 (6.1-b)

where V' is the vertical component of the cable tension at = (Note that if the cable was

subjected to its own weight then we would have wds instead of wdz). Because the cable must
be tangent to T', we have

Vv
tanf = — 6.2
an 7 (6.2)
Substituting into Eq. 6.1-b yields

d(H tanf) + wdx = 0 = _d%c (Htanf) = w (6.3)

> But H is constant (no horizontal load is applied), thus, this last equation can be rewritten as

d
- H% (tanf) = w (6.4)

3 Written in terms of the vertical displacement v, tanf = g—; which when substituted in Eq.

6.4 yields the governing equation for cables
—HY' =w (6.5)
4 For a cable subjected to a uniform load w, we can determine its shape by double integration
of Eq. 6.5
— Hv = wr+C (6.6-a)
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2
“Hv = % 4 Ciz + Oy (6.6-b)

and the constants of integrations C; and Cs can be obtained from the boundary conditions:
szatszandata::L:CQZOandCl:—“’TL. Thus
w
=50 T
This equation gives the shape v(z) in terms of the horizontal force H,

v (L—x) (6.7)

5 Since the maximum sag h occurs at midspan (z = %) we can solve for the horizontal force
wlL?
H=— 6.8
2 (6.8)

we note the anzzﬂogy with the maximum moment in a simply supported uniformly loaded beam
M=Hh= %. Furthermore, this relation clearly shows that the horizontal force is inversely
proportional to the sag h, as h \, H . Finally, we can rewrite this equation as

def % (6.9-a)
L
% = & (6.9-b)

¢ Eliminating H from Eq. 6.7 and 6.8 we obtain

1»'2 x

Thus the cable assumes a parabolic shape (as the moment diagram of the applied load).

7 Whereas the horizontal force H is constant throughout the cable, the tension T is not. The
maximum tension occurs at the support where the vertical component is equal to V' = “’TL and

the horizontal one to H, thus

Tmaxz\/m:,/(%)2+ﬂ2:m/1+(%/2)2 (6.11)

Combining this with Eq. 6.8 we obtain'.

Tmax = HV1+ 162 ~ H(1 + 8r?) (6.12)

s Had we assumed a uniform load w per length of cable (rather than horizontal projection),
the equation would have been one of a catenary?.

v = Ecosh [% (£ - :c)} +h (6.13)

w 2

The cable between transmission towers is a good example of a catenary.

'Recalling that (a+b)" = a™ +na™ 'b+ %a"%bQJp or (1+b)" =1+4+nb+ n<";1)b2 + "<"71)('"72>b3

Ell
Thus for b << 1, VI+b=(1+b)7 ~ 1+ 2%
2Derivation of this equation is beyond the scope of this course.
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tower supports and are firmly anchored in both banks by huge blocks of concrete, the anchors.

14 Because the cables are much longer than they are thick (large %), they can be idealized a
perfectly flexible members with no shear/bending resistance but with high axial strength.

15 The towers are 578 ft tall and rest on concrete caissons in the river. Because of our assumption
regarding the roller support for the cables, the towers will be subjected only to axial forces.

6.2.2 Loads

16 The dead load is composed of the weight of the deck and the cables and is estimated at 390
and 400 psf respectively for the central and side spans respectively. Assuming an average width
of 100 ft, this would be equivalent to

DL = (390) psf(100) ft = 39 k/ft (6.14)

(1,000) 1bs
for the main span and 40 k/ft for the side ones.

17 For highway bridges, design loads are given by the AASHTO (Association of American State
Highway Transportation Officials). The HS-20 truck is often used for the design of bridges on
main highways, Fig. 6.3. Either the design truck with specified axle loads and spacing must be
used or the equivalent uniform load and concentrated load. This loading must be placed such
that maximum stresses are produced.

% 14" -0 %{ % 14 -0 %14’ to 30’%{ 6' - O”{e{ %2’ - 0"
8 32 8 32 32

Axle loads
(kips)

H20- Truck HS20- Truck

18k for moment to be positioned
26k for shear for maximum effect
w = 0.64 kips/linear ft of lane

ib b b bdbdigd

H20 and HS20 Lane

Figure 6.3: Truck Load

1z With two decks, we estimate that there is a total of 12 lanes or
LL = (12)Lanes(.64) k/ ft/Lane = 7.68 k/ft ~ 8 k/ft (6.15)
We do not consider earthquake, or wind loads in this analysis.

19 Final DL and LL are, Fig. 6.4: TL = 39+ 8 = 47 k/ft
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6.2.3 Cable Forces

20 The thrust H (which is the horizontal component of the cable force) is determined from Eq.

6.8 L2
w
H = —=
(47) k/ft(3,500)2 ft>
(8)(327) ft

220,000 k
From Eq. 6.12 the maximum tension is
— h _ 327 __

Tmax = H\/1+16T2
(2, 200) kv/1 + (16)(0.0934)2

(2,200) k(1.0675) =[235,000 k

6.2.4 Reactions

21 Cable reactions are shown in Fig. 6.5.

POINTS WITH C
REACTIONS TO
CABLES

Figure 6.5: Location of Cable Reactions

22 The vertical force in the columns due to the central span (cs) is simply the support reaction,
6.6

T e

REACTIONS AT

—
POINT OF NO TOP OF TOWER

MOMENT

\ L =3.500 FT \

Figure 6.6: Vertical Reactions in Columns Due to Central Span Load

1 1
Ves = gwLes = 5 (47) k/16(3,500) fr = 82,250 k (6.16)
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27 The cable stresses are determined last, Fig. 6.8:

nD?  (3.14)(0.196)>

Avire = == = I = 0.03017 in* (6.22-a)
Aot = (4)cables(26,474)wires/cable(0.03017) in? /wire = 3, 20022°)
H  (220,000) k
Central Span o = T W = 68.75 ksi (6.22-c)
, mn
TSS 262 .. 92
Side Span Tower opo o = to/\{ver = ((2 ’228?) 1121 = (6.22-d)
R in
. U 24 in?
Side Span Anchor of3ye, = -~ = ( ( 37’288?), = 77.2 ki (6.22-¢)
R in

73.4 ksi™_ 4 81.9 ksi

Figure 6.8: Cable Stresses

28 If the cables were to be anchored to a concrete block, the volume of the block should be at

(112,000) k(1,000) Ibs/ k 3 i
150 Ibs/ft° = 747,000 ft° or a cube of approximately 91 ft

least equal to V =

20 The deck, for all practical purposes can be treated as a continuous beam supported by elastic
springs with stiffness K = AL/E (where L is the length of the supporting cable). This is often
idealized as a beam on elastic foundations, and the resulting shear and moment diagrams for
this idealization are shown in Fig. 6.9.
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Chapter 7

A BRIEF HISTORY OF
STRUCTURAL ARCHITECTURE

If I have been able to see a little farther than some others,
it was because I stood on the shoulders of giants.

Sir Isaac Newton

1 More than any other engineering discipline, Architecture/Mechanics/Structures is the proud
outcome of a of a long and distinguished history. Our profession, second oldest, would be better
appreciated if we were to develop a sense of our evolution.

7.1 Before the Greeks

2 Throughout antiquity, structural engineering existing as an art rather than a science. No
record exists of any rational consideration, either as to the strength of structural members or
as to the behavior of structural materials. The builders were guided by rules of thumbs and
experience, which were passed from generation to generation, guarded by secrets of the guild,
and seldom supplemented by new knowledge. Despite this, structures erected before Galileo are
by modern standards quite phenomenal (pyramids, Via Appia, aqueducs, Colisseums, Gothic
cathedrals to name a few).

3 The first structural engineer in history seems to have been Imhotep, one of only two com-
moners to be deified. He was the builder of the step pyramid of Sakkara about 3,000 B.C., and
yielded great influence over ancient Egypt.

+ Hamurrabi’s code in Babylonia (1750 BC) included among its 282 laws penalties for those
“architects” whose houses collapsed, Fig. 7.1.

7.2 Greeks

5 The greek philosopher Pythagoras (born around 582 B.C.) founded his famous school, which
was primarily a secret religious society, at Crotona in southern Italy. At his school he allowed
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Figure 7.2: Archimed

conqueror of Syracuse.

7.3 Romans

10 Science made much less progress under the Romans than under the Greeks. The Romans
apparently were more practical, and were not as interested in abstract thinking though they
were excellent fighters and builders.

11 As the roman empire expanded, the Romans built great roads (some of them still in use)
such as the Via Appia, Cassia, Aurelia; Also they built great bridges (such as the third of a
mile bridge over the Rhine built by Caesars), and stadium (Colliseum).

12 One of the most notable Roman construction was the Pantheon, Fig. 7.3. It is the best-

Figure 7.3: Pantheon

preserved major edifice of ancient Rome and one of the most significant buildings in architectural
history. In shape it is an immense cylinder concealing eight piers, topped with a dome and
fronted by a rectangular colonnaded porch. The great vaulted dome is 43 m (142 ft) in diameter,
and the entire structure is lighted through one aperture, called an oculus, in the center of the
dome. The Pantheon was erected by the Roman emperor Hadrian between AD 118 and 128.
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Figure 7.5: Hagia Sophia

dieval masons’ efforts to solve the problems associated with supporting heavy masonry ceiling
vaults over wide spans. The problem was that the heavy stonework of the traditional arched
barrel vault and the groin vault exerted a tremendous downward and outward pressure that
tended to push the walls upon which the vault rested outward, thus collapsing them. A build-
ing’s vertical supporting walls thus had to be made extremely thick and heavy in order to
contain the barrel vault’s outward thrust.

Medieval masons solved this difficult problem about 1120 with a number of brilliant inno-
vations. First and foremost they developed a ribbed vault, in which arching and intersecting
stone ribs support a vaulted ceiling surface that is composed of mere thin stone panels. This
greatly reduced the weight (and thus the outward thrust) of the ceiling vault, and since the
vault’s weight was now carried at discrete points (the ribs) rather than along a continuous wall
edge, separate widely spaced vertical piers to support the ribs could replace the continuous
thick walls. The round arches of the barrel vault were replaced by pointed (Gothic) arches
which distributed thrust in more directions downward from the topmost point of the arch.

Since the combination of ribs and piers relieved the intervening vertical wall spaces of their
supportive function, these walls could be built thinner and could even be opened up with large
windows or other glazing. A crucial point was that the outward thrust of the ribbed ceiling
vaults was carried across the outside walls of the nave, first to an attached outer buttress and
then to a freestanding pier by means of a half arch known as a flying buttress. The flying
buttress leaned against the upper exterior of the nave (thus counteracting the vault’s outward
thrust), crossed over the low side aisles of the nave, and terminated in the freestanding buttress
pier, which ultimately absorbed the ceiling vault’s thrust.

These elements enabled Gothic masons to build much larger and taller buildings than their
Romanesque predecessors and to give their structures more complicated ground plans. The
skillful use of flying buttresses made it possible to build extremely tall, thin-walled buildings
whose interior structural system of columnar piers and ribs reinforced an impression of soaring
verticality.

19 Vilet-Le-Duc classical book, (le Duc 1977) provided an in depth study of Gothic architecture.
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31 Unfortunatly, these important findings, were buried in his notes, and engineers in the fifteenth
and sixteenth centuries continued, as in the Roman era, to fix dimensions of structural elements
by relying on experience and judgment.

7.5.2 Brunelleschi 1377-1446

32 Brunelleschi was a Florentine architect and one of the initiators of the Italian Renaissance.
His revival of classical forms and his championing of an architecture based on mathematics,
proportion, and perspective make him a key artistic figure in the transition from the Middle
Ages to the modern era.

33 He was born in Florence in 1377 and received his early training as an artisan in silver and gold.
In 1401 he entered, and lost, the famous design competition for the bronze doors of the Florence
Baptistery. He then turned to architecture and in 1418 received the commission to execute the
dome of the unfinished Gothic Cathedral of Florence, also called the Duomo. The dome, Fig.
7.6 a great innovation both artistically and technically, consists of two octagonal vaults, one

Figure 7.6: Florence’s Cathedral Dome

inside the other. Its shape was dictated by its structural needs one of the first examples of
architectural functionalism. Brunelleschi made a design feature of the necessary eight ribs
of the vault, carrying them over to the exterior of the dome, where they provide the framework
for the dome’s decorative elements, which also include architectural reliefs, circular windows,
and a beautifully proportioned cupola. This was the first time that a dome created the same
strong effect on the exterior as it did on the interior.

32 Completely different from the emotional, elaborate Gothic mode that still prevailed in his
time, Brunelleschi’s style emphasized mathematical rigor in its use of straight lines, flat
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Figure 7.7: Palladio’s Villa Rotunda
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Figure 7.9: Galileo

was born. His contract was not renewed in 1592, probably because he contradicted Aristotelian
professors. The same year, he was appointed to the chair of mathematics at the University of
Padua, where he remained until 1610.

50 In Padua he achieved great fame, and lecture halls capable of containing 2,000 students from
all over Europe were used. In 1592 he wrote Della Scienza Meccanica in which various problems
of statics were treated using the principle of virtual displacement. He subsequently became
interested in astronomy and built one of the first telescope through which he saw Jupiter and
became an ardent proponent of the Copernican theory (which stated that the planets circle the
sun as opposed to the Aristotelian and Ptolemaic assumptions that it was the sun which was
circling Earth). This theory being condemned by the church, he received a semiofficial warning
to avoid theology and limit himself to physical reasoning. When he published his books dealing
with the two ways of regarding the universe (which clearly favored the Copernican theory) he
was called to Rome by the Inquisition, condemned and had to read his recantation (At the end
of his process he murmured the famous e pur se muove).

51 When he was almost seventy years old, his life shattered by the Inquisition, he retired to
his villa near Florence and wrote his final book, Discourses Concerning Two New Sciences,
(Galilei 1974), Fig. 7.10. His first science was the study of the forces that hold objects together

DISCORS)

E
DIMOSTRAZIONI
MATEMATST CHF

imberna a dwe nuowe faence

GALTTEQ
Filfoban Mo

IN FEED A
Aporeilo g B, m. o, 0w

Figure 7.10: Discourses Concerning Two New Sciences, Cover Page
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appointed Gresham Professor of Geometry at Oxford in 1665. After the Great Fire of London
in 1666, he was appointed surveyor of London, and he designed many buildings.

57 Hooke anticipated some of the most important discoveries and inventions of his time but failed
to carry many of them through to completion. He formulated the theory of planetary motion
as a problem in mechanics, and grasped, but did not develop mathematically, the fundamental
theory on which Newton formulated the law of gravitation.

ss His most important contribution was published in 1678 in the paper De Potentia Restitutiva.
It contained results of his experiments with elastic bodies, and was the first paper in which the
elastic properties of material was discused, Fig. 7.12.

Figl 5 C——

Figure 7.12: Experimental Set Up Used by Hooke

“Take a wire string of 20, or 30, or 40 ft long, and fasten the upper part thereof to
a nail, and to the other end fasten a Scale to receive the weights: Then with a pair
of compasses take the distance of the bottom of the scale from the ground or floor
underneath, and set down the said distance,then put inweights into the said scale
and measure the several stretchings of the said string, and set them down. Then
compare the several strtchings of the said string, and you will find that they will
always bear the same proportions one to the other that the weights do that made
them”.

This became Hooke’s Law o = Fe.

5o Because he was concerned about patent rights to his invention, he did not publish his law
when first discovered it in 1660. Instead he published it in the form of an anagram “ceiinossst-
tuu” in 1676 and the solution was given in 1678. Ut tensio sic vis (at the time the two symbos
u and v were employed interchangeably to denote either the vowel u or the consonant v), i.e.
extension varies directly with force.

7.6.2 Newton, 1642-1727

60 Born on christmas day in the year of Galileo’s death, Newton, Fig. 7.13 was Professor of
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63 The Principia’s appearance also involved Newton in an unpleasant episode with the English
philosopher and physicist Robert Hooke. In 1687 Hooke claimed that Newton had stolen from
him a central idea of the book: that bodies attract each other with a force that varies inversely
as the square of their distance. However, most historians do not accept Hooke’s charge of
plagiarism.

62 Newton also engaged in a violent dispute with Leibniz over priority in the invention of
calculus. Newton used his position as president of the Royal Society to have a committee of
that body investigate the question, and he secretly wrote the committee’s report, which charged
Leibniz with deliberate plagiarism. Newton also compiled the book of evidence that the society
published. The effects of the quarrel lingered nearly until his death in 1727.

65 In addition to science, Newton also showed an interest in alchemy, mysticism, and theology.
Many pages of his notes and writings particularly from the later years of his career are devoted
to these topics. However, historians have found little connection between these interests and
Newton’s scientific work.

7.6.3 Bernoulli Family 1654-1782

66 The Bernouilli family originally lived in Antwerp, but because of religious persecution, they
left Holland and settled in Basel. Near the end of the seventeenth century this family produced
outstanding mathematicians for more than a hundred years. Jacob and John were brothers.
John was the father of Daniel, and Euler his pupil.

67 Whereas Galileo (and Mariotte) investigated the strength of beams (Strength), Jacob Bernoulli
(1654-1705) made calculation of their deflection (Stiffness) and did not contribute to our knowl-
edge of physical properties. Jacob Bernouilli is also credited in being the first to to have assumed
that a bf plane section of a beam remains plane during bending, but assumed rotation to be
with respect to the lower fiber (as Galileo did) and this resulted in an erroneous solution (where
is the exact location of the axis of rotation?). He also showed that the curvature at any point
along a beam is proportional to the curvature of the deflection curve.

es Bernoulli made the first analytical contribution to the problem of elastic flexure of a beam.
In 1691 he published a logogriph Qrzumubapt dxqopddbbp ... whose secret was revealed in 1694.
A letter is replaced by the next in the Latin alphabet, the second by the letter three away, and
the third by the letter six away, so that aaaaa would be encoded as bdgbd. The logogriph reads
Portio axis applicatem... and the decoded is that the radius of curvature at any point of an
initially straight beam in inversely proportional to the value of the bending moment at that
point.

6o Daniel Bernoulli (1700-1782) first postulated that a force can be decomposed into its equiv-
alent ( “Potentiis quibuscunque possunt substitui earundem aequivalentes”. Another hypothesis
defined the sum of two “conspiring” forces applied to the same point. According to Bernoulli,
this “necessary truth” follows from the metaphysical principle that the whole equalts the sum
of its parts, (Penvenuto 1991).

7.6.4 Euler 1707-1783

70 Leonhard Euler was born in Basel and early on caught the attention of John Bernoulli
whose teaching was attracting young mathematicians from all over Europe, Fig. 7.15. He
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7.7 The pre-Modern Period; Coulomb and Navier

75 Coulomb (1736-1806) was a French military engineer, Fig. 7.16, as was the first to publish

Figure 7.16: Coulomb

the correct analysis of the fiber stresses in flexed beam with rectangular cross section (Sur
une Application des Régles de maximis et minimis a quelques problemes de statique relatifs
a larchitecture in 1773). He used Hooke’s law, placed the neutral axis in its exact position,
developed the equilibrium of forces on the cross section with external forces, and then correcly
determined the stresses. He also worked on friction (“Coulomb friction”) and on earth pressure.

76 Coulomb did also research on magnetism, friction, and electricity. In 1777 he invented
the torsion balance for measuring the force of magnetic and electrical attraction. With this
invention, Coulomb was able to formulate the principle, now known as Coulomb’s law, governing
the interaction between electric charges. In 1779 Coulomb published the treatise Theorie des
machines simples (Theory of Simple Machines), an analysis of friction in machinery. After the
war Coulomb came out of retirement and assisted the new government in devising a metric
system of weights and measures. The unit of quantity used to measure electrical charges, the
coulomb, was named for him.

77 Navier (1785-1836) Navier was educated at the Ecole Polytechnique and became a professor
there in 1831. Whereas the famous memoir of Coulomb (1773) contained the correct solution
to numerous important problems in mechanics of materials, it took engineers more than forty
years to understand them correctly and to use them in practical application

7s In 1826 he published his Le¢ons (lecture notes) which is considered the first great textbook
in mechanics for engineering. In it he developed the first general theory of elastic solids as well
as the first systematic treatment of the theory of structures.

79 It should be noted that no clear division existed between the theory of elasticity and the
theory of structures until about the middle of the nineteenth century (Coulomb and Navier
would today be considered professional structural engineers).

so Three other structural engineers who pioneered the development of the theory of elasticity
from that point on were Lamé, Clapeyron and de Saint-Venant. Lam’e published the first
book on elasticity in 1852, and credited Clapeyron for the theorem of equality between external
and internal work. de Saint-Venant was perhaps the greatest elasticians who according to
Southwell “... combined with high mathematical ability an essentially practical outlook which
gave direction to all his work”. In 1855-6 he published his classical work on torsion, flexure,
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ss His famous axiom, Form follows function became the touchstone for many in his profes-
sion. Sullivan, however, did not apply it literally. He meant that an architect should consider
the purpose of the building as a starting point, not as a rigidly limiting stricture.

so He also had tremendous respect for the natural world which played an enormous role in
forging his theories about architecture (he spent all of his first summers on his grandparents’
farm in Massachusetts where he developed this love and respect for nature) expressed in his
Autobiography of an Idea), 1924).

7.8.4 Roebling, 1806-1869

90 John Augustus Roebling was an American civil engineer, who was one of the pioneers
in the construction of suspension bridges. He was born in Germany, educated at the Royal
Polytechnic School of Berlin and immigrated to the States in 1831.

o1 In his first job he was employed by the Pennsylvania Railroad Corp. to survey its route
across the Allegheny Mountains between Harrisburg and Pittsburgh. He then demonstrated
the practicability of steel cables in bridge construction and in 1841 established at Saxonburg
the first factory to manufacture steel-wire rope in the U.S.

92 Roebling utilized steel cables in the construction of numerous suspension bridges and is
generally considered one of the pioneers in the field of suspension-bridge construction. He
built railroad suspension bridges over the Ohio and Niagara rivers and completed plans for the
Brooklyn Bridge shortly before his death. Roebling was the author of Long and Short Span
Railway Bridges (1869).

7.8.5 Maillart
From (Billington 1973)

93 Robert Maillart was born on February 6, 1872, in Bern, Switzerland, where his father, a
Belgian citizen, was a banker. He studied civil engineering at the Federal Institute of Technology
in Zurich and graduated in 1894. Ironically, one of his lowest grades was in bridge design, even
though he is regarded today as one of the half dozen greatest bridge designers of the twentieth
century.

o4 For eight years following his graduation, he worked with different civil engineering organi-
zations. In 1902, he founded his own firm for design and construction; thereafter, his business
grew rapidly and expanded as far as Russia and Spain. In the summer of 1914, he took his
wife and three children to Russia. Since the World War prevented their return to Switzerland,
Maillart stayed and worked in Russia until 1919, when his business was liquidated by the Rev-
olution. Forced to flee, he returned to Switzerland penniless and lonely, his wife having died in
Russia.

95 Because of these misfortunes Maillart felt unable to take up the construction business again
and henceforth concentrated on design alone. He opened an office in Geneva in 1919 and
branches in Bern and Zurich in 1924.

96 During the twenties he began to develop and modify his ideas of bridge design; and from
1930, when the Salginatobel and Landquart Bridges were completed, until his death in 1940,
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Figure 7.17: Nervi’s Palazetto Dello Sport

needed for high towers, eliminated the need for internal wind bracing (since the perimeter
columns carried the wind loadings), and permitted freer organization of the interior space.

His later projects included the strikingly different Haj Terminal of the King Abdul Aziz
International Airport, Jiddah, Saudi Arabia (1976-81), and King Abdul Aziz University, also
in Jiddah (1977-78).

7.8.8 et al

102 To name just a few of the most influential Architects/Engineers: Menn, Isler, Candella,
Torroja, Johnson, Pei, Calatrava, ...
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than my bare hands and no further addition to my academic background. After several years
of general practice in Mexico, as draftsman, designer and contractor, I recalled my old fancy
with shells and began to collect again papers on the subject. Whatever I learned from then on
was to be the hard way, working alone, with no direct help from any university or engineering
office. But I am indebted to many people who did help me through their writings and Maillart
was one of the foremost.

I discovered him in Giedion’s Space, Time and Architecture; and then I got Max Bill’s book
with its invaluable collection of Maillart’s essays. I devoured his articles about ”Reinforced
Concrete Design and Calculation” (he was very careful to differentiate the meaning of such
words and to avoid the more than semantic confusion prevalent nowadays in English-speaking
countries)., ”The Engineer and the Authorities” which expresses his position in front of the
establishment and ”Mass and Quality in Reinforced Concrete Structures.” Very short papers,
indeed, but well provided with opinions, something I could rarely find in other engineering ar-
ticles. I learned later that to express personal opinions is considered bad taste among technical
writers. Any discussion should be restricted to insignificant details, but never touch funda-
mental dogmas, in a fashion curiously similar to what could be expected of the councils of the
Church or the meetings of any Politbureau.

But my attitude with respect to calculations of reinforced concrete structures was becoming
unorthodox, being tired perhaps of performing long and tedious routines whose results were
not always meaningful. Therefore, I found Maillart’s thoughts delightfully sympathetic and
encouraging. If a rebel was able to produce such beautiful and sound structures there could
not be anything wrong with becoming also a rebel, which was besides, my only way to break
the mystery surrounding shell analysis.

Thus, I started to follow the bibliographic tread and met, through their writings, with
Freudenthal, Johansen, Van der Broek, Kist, Saliger, Kacinczy and so many others who showed
me there was more than a single and infallible manner to approach structural analysis. The
discovery of rupture methods, with their emphasis on simple statics and their bearing on the
actual properties of construction materials and their behavior in the plastic range, allowed me
to trust in simplified procedures to understand and analyze the distribution of stresses in shell
structures. It also helped me to get out of my naive belief in the indisputable truth of the
printed word and to start reading with a new critical outlook. No longer did I need to believe
whatever was in print, no matter how high-sounding the name of the author. I could make my
own judgements about what methods of stress analysis were better suited for my practice.

Since I was working practically alone, I could not afford nor had time for complex cal-
culations and did welcome Maillart’s advice that simpler calculations are more reliable than
complex ones, especially for somebody who builds his own structures. This was exactly my
case and, since most structures I was building were of modest scale, I could control what was
happening, check the results and confirm the accuracy of my judgement or correct my mistakes.
In a way, I was working with full scale models. I understand that this was also true of Maillart
who in many cases was the actual builder of his designs.

Following the general trend to mess up issues, there has been a lot of speculation about the
engineer as an artist and in some instances, like in the case of Nervi, about the engineer as an
architect (as if the title of architect could confer, per se, artistic ability to its holder); but few
people realize that the only way to be an artist in this difficult specialty of building is to be
your own contractor. in countries like this, where the building industry has been thoroughly
and irreversibly fragmented and the responsibility diluted among so many trades, it may be
shocking to think of a contractor as an artist; but it is indeed the only way to have in your
hands the whole set of tools or instruments to perform the forgotten art of building, to produce
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Chapter 8

Case Study III: MAGAZINI
GENERALI

Adapted from (Billington and Mark 1983)

8.1 Geometry

1 This sotrage house, built by Maillart in Chiasso in 1924, provides a good example of the
mariage between aesthetic and engineering.

2 The most strking feature of the Magazini Generali is not the structure itself, but rather the
shape of its internal supporting frames, Fig. 8.1.

3 The frame can be idealized as a simply supported beam hung from two cantilever column
supports. Whereas the beam itself is a simple structural idealization, the overhang is designed
in such a way as to minimize the net moment to be transmitted to the supports (foundations),
Fig. 8.2.

8.2 Loads

1 The load applied on the frame is from the weights of the roof slab, and the frame itself. Given
the space between adjacent frames is 14.7 ft, and that the roof load is 98 psf, and that the
total frame weight is 13.6 kips, the total uniform load becomes, Fig. 8.3:

Groof = (98) psf(14.7) ft = 1.4 k/ft (8.1-a)
(13.6) k

rame = 7o~ = 0.2k/ft 1-b

o G361 2K (8.1-b)

Gotar = 14+02=[16 Lk/ft (8.1-c)
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Qroor= 14 K/t + qpaue = 02 K/ft

q roor= 1.4 k/ft
0.2 k/ft

+ 9prame =
) =
Q D B D g toraL= 1.6 k/ft

Figure 8.3: Magazzini Generali; Loads (Billington and Mark 1983)
8.3 Reactions

5 Reactions for the beam are determined first taking advantage of symmetry, Fig. 8.4:
W = (1.6) k/ft(63.6) ft = 102 k (8.2-a)
R = %:%: (8.2-b)
We note that these reactions are provided by the internal shear forces.

=1.6 k/ft

Arorar

‘ 63.6 ft ‘

Figure 8.4: Magazzini Generali; Beam Reactions, (Billington and Mark 1983)

8.4 Forces

6 The internal forces are pimarily the shear and moments. Those can be easily determined for
a simply supported uniformly loaded beam. The shear varies linearly from 51 kip to -51 kip
with zero at the center, and the moment diagram is parabolic with the maximum moment at
the center, Fig. 8.5, equal to:

L% (1.6) k/ft(63.6) ft>
Mo = B = B — (508 e 83

7 The externally induced moment at midspan must be resisted by an equal and opposite internal
moment. This can be achieved through a combination of compressive force on the upper fibers,
and tensile ones on the lower. Thus the net axial force is zero, however there is a net internal
couple, Fig. 8.6.
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ME:L‘
Moy = Cd=C = dt (8.4-a)

o (808) kft
T=C = “Gor =[+ 88 k] (8.4-b)

s Because the frame shape (and thus d(z)) is approximately parabolic, and the moment is also
parabolic, then the axial forces are constants along the entire frame, Fig. 8.7.

WW

d

MOMENT DIAGRAM FRAME
w SO )=
CABLE: FRAME :
CURVE OF DIAGRAM SHAPE OF DIAGRAM

Figure 8.7: Magazzini Generali; Similarities Between The Frame Shape and its Moment Dia-
gram, (Billington and Mark 1983)

o The axial force at the end of the beam is not balanced, and the 88 kip compression must be
transmitted to the lower chord, Fig. 8.8. Fig. 8.9 This is analogous to the forces transmiited

88 k . . Tension l
88k —
?‘ T . [ J
Compression

Horizontal Component
Tied Arch
fec Are Cable Force

Axial Force

Vertical Reaction

Figure 8.8: Magazzini Generali; Equilibrium of Forces at the Beam Support, (Billington and
Mark 1983)

to the support by a tied arch.

10 It should be mentioned that when a rigorous computer analysis was performed, it was de-
termined that the supports are contributing a compression force of about 8 kips which needs
to be superimposed over the central values, Fig. 8.9.
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Chapter 9

DESIGN PHILOSOPHIES of ACI
and AISC CODES

9.1 Safety Provisions

1 Structures and structural members must always be designed to carry some reserve load above
what is expected under normal use. This is to account for

Variability in Resistance: The actual strengths (resistance) of structural elements will dif-
fer from those assumed by the designer due to:

1. Variability in the strength of the material (greater variability in concrete strength
than in steel strength).

2. Differences between the actual dimensions and those specified (mostly in placement
of steel rebars in R/C).

3. Effect of simplifying assumptions made in the derivation of certain formulas.

Variability in Loadings: All loadings are variable. There is a greater variation in the live
loads than in the dead loads. Some types of loadings are very difficult to quantify (wind,
earthquakes).

Consequences of Failure: The consequence of a structural component failure must be care-
fully assessed. The collapse of a beam is likely to cause a localized failure. Alternatively
the failure of a column is likely to trigger the failure of the whole structure. Alternatively,
the failure of certain components can be preceded by warnings (such as excessive defor-
mation), whereas other are sudden and catastrophic. Finally, if no redistribution of load
is possible (as would be the case in a statically determinate structure), a higher safety
factor must be adopted.

2 The purpose of safety provisions is to limit the probability of failure and yet permit
economical structures.

3 The following items must be considered in determining safety provisions:

1. Seriousness of a failure, either to humans or goods.
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where F.S. is the factor of safety.

10 Major limitations of this method
1. An elastic analysis can not easily account for creep and shrinkage of concrete.
2. For concrete structures, stresses are not linearly proportional to strain beyond 0.45 f!.

3. Safety factors are not rigorously determined from a probabilistic approach, but are the
result of experience and judgment.

11 Allowable strengths are given in Table 9.1.

Steel, AISC/ASD
Tension, Gross Area Fy =0.6F,
Tension, Effective Net Area* | F; = 0.5F,
Bending F, = 0.66F)
Shear F, =0.40F,
Concrete, ACI/WSD

Tension 0
Compression 0.45f!

* Effective net area will be defined in section 77.

Table 9.1: Allowable Stresses for Steel and Concrete

9.3 Ultimate Strength Method

9.3.1 The Normal Distribution

12 The normal distribution has been found to be an excellent approximation to a large class of
distributions, and has some very desirable mathematical properties:

1. f(z) is symmetric with respect to the mean p.
2. f(x) is a “bell curve” with inflection points at x = pu + o.

3. f(x) is a valid probability distribution function as:

| rw =1 9.2)

—0o0

4. The probability that x,,;, < T < Tmee is given by:

P(&min < & < Tmas) = / T @) da (9.3)

Tmin
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Frequency

R

Resistance R
Load Effect Q

m

Figure 9.3: Frequency Distributions of Load @) and Resistance R

Failure would occur for negative values of X

19 The probability of failure P; is equal to the ratio of the shaded area to the total area
under the curve in Fig. 9.4.

Frequency
P |
—— 3
0 Bo (In(R/Ql, In(R/Q)
~— In(R/Q) A

Figure 9.4: Definition of Reliability Index

20 If X is assumed to follow a Normal Distribution than it has a mean value X = (ln %)

and a standard deviation o.

X
g

21 We define the safety index (or reliability index) as 3 =

22 For standard distributions and for 8 = 3.5, it can be shown that the probability of failure is
Py = 457 or 1.1 x 1074, That is 1 in every 10,000 structural members designed with 8 = 3.5
will fail because of either excessive load or understrength sometime in its lifetime.

23 Reliability indices are a relative measure of the current condition and provide a qualitative
estimate of the structural performance.

24 Structures with relatively high reliable indices will be expected to perform well. If the value
is too low, then the structure may be classified as a hazard.

25 Target values for 3 are shown in Table 9.2, and in Fig. 9.5
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Type of Load/Member ’ Ié;
AISC

DL + LL; Members 3.0

DL + LL; Connections 4.5

DL + LL + WL; Members | 3.5
DL + LL +EL; Members 1.75

ACI
Ductile Failure 3-3.5
Sudden Failures 3.5-4

Table 9.2: Selected 3 values for Steel and Concrete Structures

® is a strength reduction factor, less than 1, and must account for the type of structural
element, Table 9.3.

Type of Member ‘ )
ACI
Axial Tension 0.9
Flexure 0.9
Axial Compression, spiral reinforcement | 0.75
Axial Compression, other 0.70
Shear and Torsion 0.85
Bearing on concrete 0.70
AISC
Tension, yielding 0.9
Tension, fracture 0.75
Compression 0.85
Beams 0.9
Fasteners, Tension 0.75
Fasteners, Shear 0.65

Table 9.3: Strength Reduction Factors, ®

R,, is the nominal resistance (or strength).

®R,, is the design strength.

«; is the load factor corresponding to @); and is greater than 1.
Ya;Q; is the required strength based on the factored load:

i is the type of load

32 The various factored load combinations which must be considered are

AISC
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9.4 Example

B Example 9-1: LRFD vs ASD

To illustrate the differences between the two design approaches, let us consider the design
of an axial member, subjected to a dead load of 100 k and live load of 80 k. Use A36 steel.

ASD: We consider the total load P = 100 + 80 = 180 k. From Table 9.1, the allowable stress
is 0.60,4 = 0.6 * 36 = 21.6 ksi. Thus the required cross sectional area is

180 Ly
A— m —833 m

USD we consider the largest of the two load combinations

S;Q;: 1.4D = 1.4(100) =140 k
12D+ 1.6L = 1.2(100)+ 1.6(80) =248 k =

From Table 9.3 ® = 0.9, and ®R,, = (0.9)Ao,4. Hence, applying Eq. 9.9 the cross
sectional area should be

A= - =7.65 in’
doy,g  (0.9)(36)

Note that whereas in this particular case the USD design required a smaller area, this may not
be the case for different ratios of dead to live loads. |
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Chapter 10

BRACED ROLLED STEEL BEAMS

1 This chapter deals with the behavior and design of laterally supported steel beams accord-
ing to the LRFD provisions.

2 A laterally stable beam is one which is braced laterally in the direction perpendicular to the
plane of the web. Thus overall buckling of the compression flange as a column cannot occur
prior to its full participation to develop the moment strength of the section.

s If a beam is not laterally supported, Fig. 10.1, we will have a failure mode governed by lateral

A) COMPOSITE BEAM B) OTHER FRAMING

0

NV S Y

C) CROSS BRACING

Figure 10.1: Lateral Bracing for Steel Beams

torsional buckling.

4 By the end of this lecture you should be able to select the most efficient section (light weight
with adequate strength) for a given bending moment and also be able to determine the flexural
strength of a given beam.
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W I I
| . Oy
T T I |

M=(wE )/8 |
G |
Wu :Gy
RN | -
D ¢
Oy,
M =(WL2)/8

Figure 10.2: Failure of Steel beam; Plastic Hinges

WEB BUCKLING

COMPACT FLANGE BUCKLING

Figure 10.3: Failure of Steel beam; Local Buckling
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lasti
jeagsiolg — ’%Plastic regionﬁ
‘
[ S ‘
|
|

Stress

EI
Strain

Figure 10.6: Stress-strain diagram for most structural steels

13 When the yield stress is reached at the extreme fiber, the nominal moment strength M,,, is
referred to as the yield moment M, and is computed as

M, = M, = S,F, (10.3)

(assuming that bending is occurring with respect to the x — z axis).

12 When across the entire section, the strain is equal or larger than the yield strain (¢ > ¢, =
Fy/E,) then the section is fully plastified, and the nominal moment strength M,, is therefore
referred to as the plastic moment M), and is determined from

M, = Fy/AydA — F,7Z (10.4)

where

7 dt /ydA (10.5)

is the Plastic Section Modulus.

15 The plastic section modulus Z should not be confused with the elastic section modulus §
defined, Eq. 5.23 as
1
S = 10.6-
e (10.6-a)

]« / y2dA (10.6-b)
A

16 The section modulus S, of a W section can be roughly approximated by the following formula

Se~wd/10 or I~ ng ~ wd? /20 (10.7)

and the plastic modulus can be approximated by

Zy ~ wd/9 (10.8)
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Compact Partially Compact Slender

Flanges

2
o

s
5

Web I

s
s

Figure 10.7: Nominal Moments for Compact and Partially Compact Sections

where:
M, Residual Moment equal to (Fy, — F})S

A by/2t; for I-shaped member flanges and
he/ty for beam webs.

22 All other quantities are as defined earlier. Note that we use the A associated with the one
being violated (or the lower of the two if both are).

10.5 Slender Section

23 If the width to thickness ratio exceeds A, values of flange and web, the element is referred
to as slender compression element. Since the slender sections involve a different treatment, it

will not be dealt here.

10.6 Examples

B Example 10-1: 7 for Rectangular Section

Determine the plastic section modulus for a rectangular section, width b and depth d.
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2. Compute the factored load moment M,. For a simply supported beam carrying
uniformly distributed load,

M, = w,L*/8 = (1.52)(20)*/8 = 76 k.ft

Assuming compact section, since a vast majority of rolled sections satisfy A < A, for
both the flange and the web. The design strength ¢, M,, is

oMy = oMy = Q2 F,

The design requirement is
(ben = Mu

or, combing those two equations we have:
(bexF =M,

3. Required Z, is

M, 76(12)
Zy = = =|28.1 in®
SoF; = 090030
From the notes on Structural Materials, we select a W12X22 section which has a
Zp =29.3 in3

Note that Z, is approximated by %l = 2202) _ 993

9
4. Check compact section limits A, for the flanges from the table

A:Q”t—ff — 47
_ 65 _ 65 __
N = \/F_y_ﬁ_lo'8>)‘\/
and for the web: .
A=he = 418
Y 640 _ 640 _
Ap = \/Fy—\/%—m?\/

5. Check the Strength by correcting the factored moment M, to include the self weight.
Self weight of the beam W12X22 is 22 1b./ft. or 0.022 kip/ft

wp = 0.2+0.022 = 0.222 k/ft
wy, 1.2(0.222) + 1.6(0.8) = 1.55 k/ft
M, = (1.55)(20)?/8 =177.3 k.ft
- . _(29.3) in®(36) ksi _
oM, = 0.90(87.9) = 79.1 k.ft > M,/

Therefore use | W12X22 | section.

6. We finally check for the maximum distance between supports.

1 /5 .
ry = Zy = 65 = 0.88 in (10.16-&)

300
p /Fy Yy
300
= —088=|43ft 10.16-c
= (10.16-c)
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Chapter 11

REINFORCED CONCRETE
BEAMS

11.1 Introduction

1 Recalling that concrete has a tensile strength (f/) about one tenth its compressive strength
(f), concrete by itself is a very poor material for flexural members.

2 To provide tensile resistance to concrete beams, a reinforcement must be added. Steel is
almost universally used as reinforcement (longitudinal or as fibers), but in poorer countries
other indigenous materials have been used (such as bamboos).

3 The following lectures will focus exclusively on the flexural design and analysis of reinforced
concrete rectangular sections. Other concerns, such as shear, torsion, cracking, and deflections
are left for subsequent ones.

4 Design of reinforced concrete structures is governed in most cases by the Building Code
Requirements for Reinforced Concrete, of the American Concrete Institute (ACI-318). Some of
the most relevant provisions of this code are enclosed in this set of notes.

5 We will focus on determining the amount of flexural (that is longitudinal) reinforcement
required at a given section. For that section, the moment which should be considered for
design is the one obtained from the moment envelope at that particular point.

11.1.1 Notation

¢ In R/C design, it is customary to use the following notation
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11.1.3 Analysis vs Design

11 In R/C we always consider one of the following problems:

Analysis: Given a certain design, determine what is the maximum moment which can be
applied.

Design: Given an external moment to be resisted, determine cross sectional dimensions (b and
h) as well as reinforcement (As). Note that in many cases the external dimensions of the
beam (b and h) are fixed by the architect.

12 We often consider the maximum moment along a member, and design accordingly.

11.1.4 Basic Relations and Assumptions

13 In developing a design/analysis method for reinforced concrete, the following basic relations
will be used, Fig. ?7:

Compatibility Equilibrium

o ol & T

T=C
M _ext=Cd

Figure 11.2: Internal Equilibrium in a R/C Beam

1. Equilibrium: of forces and moment at the cross section. 1) XF, = 0 or Tension in the
reinforcement = Compression in concrete; and 2) XM = 0 or external moment (that is the
one obtained from the moment envelope) equal and opposite to the internal one (tension
in steel and compression of the concrete).

2. Material Stress Strain: We recall that all normal strength concrete have a failure strain
€, = .003 in compression irrespective of f.
14 Basic assumptions used:

Compatibility of Displacements: Perfect bond between steel and concrete (no slip). Note
that those two materials do also have very close coefficients of thermal expansion under
normal temperature.

Plane section remain plane = strain is proportional to distance from neutral axis.
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Actual Stress Block Equivalent Stress Block
Compression Side e 0.85¢,
< SR
/ / ‘T 3;0 G%ﬁ@ —
b \Neutro\ axis (u,%>
As
<{ o% . :

Figure 11.3: Cracked Section, Limit State

.85f

$a [c <— C-85fab

2 = T-Al

Figure 11.4: Whitney Stress Block
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11.2.3 Analysis

Given Ag, b, d, fl, and f, determine the design moment:

As
L. pact = Bd

2. Pb = (85)’81]{_;87%|-7fy

3. If pact < pp (that is failure is triggered by yielding of the steel, f; = f,)

_ Ay eq A
a 71 FromaEthbrlum Mp = ® A,f, (d 0.59 s/fy)
Mp = ®Af,(d—9) feb
M
Combining this last equation with p = % yields
Mp = ®pf,bd* (1 — .59,0%) (11.9)
&

- T If pact > pp is not allowed by the code as this would be an over-reinforced section
which would fail with no prior warning. However, if such a section exists, and we need to
determine its moment carrying capacity, then we have two unknowns:

(a) Steel strain €4 (which was equal to €, in the previous case)

(b) Location of the neutral axis c.
We have two equations to solve this problem

Equilibrium: of forces
AS fS

RCET )

Strain compatibility: since we know that at failure the maximum compressive strain
¢ is equal to 0.003. Thus from similar triangles we have

(11.10)

.003

c
i m (11.11)
Those two equations can be solved by either one of two methods:
(a) Substitute into one single equation
(b) By iteration
Once c and fs = Eeg are determined then
Mp = DAf, (d - %) (11.12)
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5. Check equilibrium of forces in the = direction (XF, = 0)

ASfS
= 11.16
.85f1b ( )
6. Check assumption of f; from the strain diagram
€s -003 d—c
s =Es——. 11.1
1o = fs = - 003 < fy ( 7)

where ¢ = %
B1

7. Iterate until convergence is reached.

B Example 11-1: Ultimate Strength Capacity

Determine the ultimate Strength of a beam with the following properties: b = 10 in, d =
23 in, As = 2.35 in?, f/ = 4,000 psi and f,, = 60 ksi.

Solution:

_  As _ 23 __
Pact = d — (10)(23) .0102
Py = 8561 f 87+f ( 85)( 85) 60 87+6O =.02885 > Pact\/

S
|

Ag, @) 60)
5715 = (83)( a0 — 4147 in

M, = (2:35)(60)(23 — “57) = 2,950 kin
Mp = @M, = (:9)(2,950) =

Note that from the strain diagram

Alternative solution

My = pactfybd? (1 - .59pact§—z)
= Asfyd (1 - -59pactfc_z)
= (2.35)(60)(23) [1 - (.59)%(.01021)} = 2,950 k.in = 245 k.ft

Mp = ®M, = (.9)(2,950) =]2,660 k.in

B Example 11-2: Beam Design I
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6. Check equilibrium of forces:

Agfy  (2.42) in?(40) ksi

= b 8B maLE) m oY
7. we have converged on a.
8. Actual p is pget = % =.011
9. pp is equal to /
P .8551;—;878: F= (.85)(.85)5—08787:@ — 037
10. pmae = -75p = (0.75)(0.037) = .0278 > 0.011/ thus f, = f, and we use

11.3 Continuous Beams

25 Whereas coverage of continuous reinforced concrete beams is beyond the scope of this course,
Fig. 7?7 illustrates a typical reinforcement in such a beam.

11.4 ACI Code

Attached is an unauthorized copy of some of the most relevant ACI-318-89 design code provi-
sions.

8.1.1 - In design of reinforced concrete structures, members shall be proportioned for ad-
equate strength in accordance with provisions of this code, using load factors and strength
reduction factors ® specified in Chapter 9.

8.3.1 - All members of frames or continuous construction shall be designed for the maximum
effects of factored loads as determined by the theory of elastic analysis, except as modified
according to Section 8.4. Simplifying assumptions of Section 8.6 through 8.9 may be used.

8.5.1 - Modulus of elasticity E. for concrete may be taken as W1233./f. ( psi) for values
of W, between 90 and 155 lb per cu ft. For normal weight concrete, E. may be taken as
57,000/ f7.

8.5.2 - Modulus of elasticity Es for non-prestressed reinforcement may be taken as 29,000
psi.

9.1.1 - Structures and structural members shall be designed to have design strengths at all
sections at least equal to the required strengths calculated for the factored loads and forces in
such combinations as are stipulated in this code.

9.2 - Required Strength

9.2.1 - Required strength U to resist dead load D and live load L shall be at least equal to

U=14D +1.7L

9.2.2 - If resistance to structural effects of a specified wind load W are included in design,
the following combinations of D, L, and W shall be investigated to determine the greatest
required strength U

U=0.751.4D+ 1.7L + 1.7TW)
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where load combinations shall include both full value and zero value of L to determine the more
severe condition, and

U=09D +1.3W

but for any combination of D, L, and W, required strength U shall not be less than Eq. (9-1).

9.3.1 - Design strength provided by a member, its connections to other members, and its
cross sections, in terms of flexure, axial load, shear, and torsion, shall be taken as the nominal
strength calculated in accordance with requirements and assumptions of this code, multiplied
by a strength reduction factor ®.

9.3.2 - Strength reduction factor ® shall be as follows:

9.3.2.1 - Flexure, without axial load 0.90

9.4 - Design strength for reinforcement Designs shall not be based on a yield strength of
reinforcement f, in excess of 80,000 psi, except for prestressing tendons.

10.2.2 - Strain in reinforcement and concrete shall be assumed directly proportional to
the distance from the neutral axis, except, for deep flexural members with overall depth to
clear span ratios greater than 2/5 for continuous spans and 4/5 for simple spans, a non-linear
distribution of strain shall be considered. See Section 10.7.

10.2.3 - Maximum usable strain at extreme concrete compression fiber shall be assumed
equal to 0.003.

10.2.4 - Stress in reinforcement below specified yield strength f, for grade of reinforcement
used shall be taken as E, times steel strain. For strains greater than that corresponding to fy,
stress in reinforcement shall be considered independent of strain and equal to f.

10.2.5 - Tensile strength of concrete shall be neglected in flexural calculations of reinforced
concrete, except when meeting requirements of Section 18.4.

10.2.6 - Relationship between concrete compressive stress distribution and concrete strain
may be assumed to be rectangular, trapezoidal, parabolic, or any other shape that results in
prediction of strength in substantial agreement with results of comprehensive tests.

10.2.7 - Requirements of Section 10.2.5 may be considered satisfied by an equivalent rect-
angular concrete stress distribution defined by the following:

10.2.7.1 - Concrete stress of 0.85f! shall be assumed uniformly distributed over an equiva-
lent compression zone bounded by edges of the cross section and a straight line located parallel
to the neutral axis at a distance (a = (1¢) from the fiber of maximum compressive strain.

10.2.7.2 - Distance ¢ from fiber of maximum strain to the neutral axis shall be measured
in a direction perpendicular to that axis.

10.2.7.3 - Factor (3; shall be taken as 0.85 for concrete strengths f! up to and including
4,000 psi. For strengths above 4,000 psi, 1 shall be reduced continuously at a rate of 0.05 for
each 1000 psi of strength in excess of 4,000 psi, but 3y shall not be taken less than 0.65.

10.3.2 - Balanced strain conditions exist at a cross section when tension reinforcement
reaches the strain corresponding to its specified yield strength f, just as concrete in compression
reaches its assumed ultimate strain of 0.003.

10.3.3 - For flexural members, and for members subject to combined flexure and compres-
sive axial load when the design axial load strength (®P,) is less than the smaller of (0.10f/A,)
or (PP), the ratio of reinforcement p provided shall not exceed 0.75 of the ratio p, that would
produce balanced strain conditions for the section under flexure without axial load. For mem-
bers with compression reinforcement, the portion of p, equalized by compression reinforcement
need not be reduced by the 0.75 factor.

10.3.4 - Compression reinforcement in conjunction with additional tension reinforcement
may be used to increase the strength of flexural members.
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Chapter 12

PRESTRESSED CONCRETE

12.1 Introduction

1 Beams with longer spans are architecturally more appealing than those with short ones.
However, for a reinforced concrete beam to span long distances, it would have to have to be
relatively deep (and at some point the self weight may become too large relative to the live
load), or higher grade steel and concrete must be used.

2 However, if we were to use a steel with f, much higher than ~ 60 ksi in reinforced concrete
(R/C), then to take full advantage of this higher yield stress while maintaining full bond between
concrete and steel, will result in unacceptably wide crack widths. Large crack widths will in
turn result in corrosion of the rebars and poor protection against fire.

3 One way to control the concrete cracking and reduce the tensile stresses in a beam is to
prestress the beam by applying an initial state of stress which is opposite to the one which will
be induced by the load.

4 For a simply supported beam, we would then seek to apply an initial tensile stress at the
top and compressive stress at the bottom. In prestressed concrete (P/C) this can be achieved
through prestressing of a tendon placed below the elastic neutral axis.

5 Main advantages of P/C: Economy, deflection & crack control, durability, fatigue strength,
longer spans.

6 There two type of Prestressed Concrete beams:

Pretensioning: Steel is first stressed, concrete is then poured around the stressed bars. When
enough concrete strength has been reached the steel restraints are released, Fig. 12.1.

Postensioning: Concrete is first poured, then when enough strength has been reached a steel
cable is passed thru a hollow core inside and stressed, Fig. 12.2.

12.1.1 Materials

7 P/C beams usually have higher compressive strength than R/C. Prestressed beams can have
/. as high as 8,000 psi.

s The importance of high yield stress for the steel is illustrated by the following simple example.
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If we consider the following:

1.
2.

10.

An unstressed steel cable of length [
A concrete beam of length [,

Prestress the beam with the cable, resulting in a stressed length of concrete and steel
equal to I}, =/,

. Due to shrinkage and creep, there will be a change in length

Ale = (sh + €cr)le (12.1)

we want to make sure that this amout of deformation is substantially smaller than the
stretch of the steel (for prestressing to be effective).

Assuming ordinary steel: f; = 30 ksi, E5 = 29,000 ksi, £5 = 5500 = 1.03 x 1073 in/ in

. The total steel elongation is €40y = 1.03 x 10731,
. The creep and shrinkage strains are about e, 4+ €4, ~ .9 x 1073

. The residual stres which is left in the steel after creep and shrinkage took place is thus

(1.03 —.90) x 1073(29 x 10%) = 4 ksi (12.2)

Thus the total loss is % = 87% which is unacceptably too high.

Alternatively if initial stress was 150 ksi after losses we would be left with 124 ksi or a
17% loss.

Note that the actual loss is (.90 x 1073)(29 x 10%) = 26 ksiin each case

9 Having shown that losses would be too high for low strength steel, we will use

Strands usually composed of 7 wires. Grade 250 or 270 ksi, Fig. 12.3.

Figure 12.3: 7 Wire Prestressing Tendon

Tendon have diameters ranging from 1/2 to 1 3/8 of an inch. Grade 145 or 160 ksi.

Wires come in bundles of 8 to 52.

Note that yield stress is not well defined for steel used in prestressed concrete, usually we take
1% strain as effective yield.

10 Steel relaxation is the reduction in stress at constant strain (as opposed to creep which
is reduction of strain at constant stress) occrs. Relaxation occurs indefinitely and produces

Victor Saouma Structural Concepts and Systems for Architects



12.1 Introduction 201

w
| Oy
— £
Y
Q; fe f 2f .
S § -
P 7} }‘ P ih/z N
f, fo=f,
2Q Rk
; 0 2f, 26
N Y
] or Lo
[ 1 2f Zf!:2fc 0
0 2f 2f
2Q t§ B §
¢ szc 26,21, 0
P }g\*/{ P c Midspan N
. - S S
N o+ 0 =
h/3 Ends fe
fC
0 T T
§
? AR
N
# P e fy=fc fe
P %\’5’/4{ j:h/z Midspan
N + 0 = N
A = =
fe Ends fe

Figure 12.4: Alternative Schemes for Prestressing a Rectangular Concrete Beam, (Nilson 1978)
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Figure 12.5: Determination of Equivalent Loads
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4. P, and My + Mpyr, + My,

fi = _ P (1 _eca) _ Mo+Mpr+Mry
1 Ac 7'2 Sl (12 7)
- _LB ecy Mo+Mpr+Mypyp :
f2 - AC ]- + 7”2 + 52

The internal stress distribution at each one of those four stages is illustrated by Fig. 12.7.

_Pi Piec 7P1(1 ec )

Ac Ic A r?
| ! % )
e c,

P Piec Pi ec
Stage 1 ~ - P9

C PRI ec Mo _Pi . ec | Mo

Stage 2
Stage 4

Figure 12.7: Flexural Stress Distribution for a Beam with Variable Eccentricity; Maximum
Moment Section and Support Section, (Nilson 1978)

17 Those (service) flexural stresses must be below those specified by the ACI code (where the
subscripts ¢, ¢, i and s refer to compression, tension, initial and service respectively):

fei  permitted concrete compression stress at initial stage .60f/;

fti permitted concrete tensile stress at initial stage <34/ fL

fes permitted concrete compressive stress at service stage .45 f!

fts permitted concrete tensile stress at initial stage 6+/f or 12,/ f

Note that fis can reach 12,/f! only if appropriate deflection analysis is done, because section

would be cracked.

1s Based on the above, we identify two types of prestressing:
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(.183)(40)?

My 3

= 36.6 k.ft (12.9-b)

The flexural stresses will thus be equal to:

M, (36.6)(12, 000)

o — = = F439 psi 12.10

f1,2 :':5172 + 1,000 F psi ( )
P ec My

= —t1-=)-=2 12.11-

h Ac < 2 > S1 ( a)

= —83-439= (12.11-b)

fi = 3/f=+190y (12.11-c)
P €ecy My

= 1+ =)+ 12.11-d

f2 Ac < * 72 ) * So ( )

= —1,837 4439 =[ 1,398 psi (12.11-¢)

fo = .6f,=—2400,/ (12.11-f)

3. P, and My. If we have 15% losses, then the effective force P, is equal to (1 — 0.15)169 =

144 &
o= _% (1 _ ‘%) _ ]‘;_10 (12.12-a)
e
— 71 —439 — (12.12-c)
= % (1 n %) n ]‘;_20 (12.12-d)
- _14;1,7200 (1 (5.25;)52)) 430 (12.12.0)

= —1,561 +439 =[—1,122 psi (12.12-f)

note that —71 and —1,561 are respectively equal to (0.85)(—83) and (0.85)(—1,837)
respectively.

4. P, and My + Mpy + Myp,

(0.55)(40)?

Mpr + M = =110 k.ft (12.13)
and corresponding stresses
110)(12, 000
fi2 = :F—( )(12,000) _ F1, 320 psi (12.14)

1,000
Thus,

o= _E( 661)_M0+MDL+MLL

21— S (12.15-a)

r2
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T
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Figure 12.8: Walnut Lane Bridge, Plan View
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12.3.3 Loads

26 The self weight of the beam is g9 = 1.72 k/ft.

27 The concrete (density=.15 k/ ft*) road has a thickness of 0.45 feet. Thus for a 44 foot width,
the total load over one single beam is

1
Qrtot = E(44) £6(0.45) £6(0.15) k/ ft3 = 0.23 k/ft (12.20)

2s Similarly for the sidewalks which are 9.25 feet wide and 0.6 feet thick:

1
Gs.ot = 75(2)(9.25) £6(0.60) £1(0.15) k/ ft3 = 0.13 k/ft (12.21)

We note that the weight can be evenly spread over the 13 beams beacause of the lateral
diaphragms.

20 The total dead load is
qpr, = 0.23+0.13 = 0.36 k/ft (12.22)

30 The live load is created by the traffic, and is estimated to be 94 psf, thus over a width of
62.5 feet this gives a uniform live load of

1
wip = 15(0.094) k/ ft3(62.5) ft = 0.45 k/ft (12.23)

31 Finally, the combined dead and live load per beam is

wpr+rr = 0.36 + 0.45 = 0.81 k/ft (12.24)

12.3.4 Flexural Stresses

1. Prestressing force, P; only

Pl' €Ccq
(2 x 10°) ( (31.8)(39.5)) :
= — 1-— =1490. 12.25-
1351 013 (12:25-)
_ P, ec
fo = A (1 + T2> (12.25-c)

(2 x 106) < (31.8)(39.5)) ,
- | — 3,445, 12.25-d
1354 " 943 ( )

2. P; and the self weight of the beam My (which has to be acconted for the moment the
beam cambers due to prestressing)

(1.72)(160)?
8
The flexural stresses will thus be equal to:

My (5,50.4)(12,000)
12 = F =
S19 943.

)

My = = 5,504 k.ft (12.26)

= F2,043 psi (12.27)
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Chapter 13

ARCHES and CURVED
STRUCTURES

1 This chapter will concentrate on the analysis of arches.

> The concepts used are identical to the ones previously seen, however the major (and only)
difference is that equations will be written in polar coordinates.

3 Like cables, arches can be used to reduce the bending moment in long span structures. Es-
sentially, an arch can be considered as an inverted cable, and is transmits the load primarily
through axial compression, but can also resist flexure through its flexural rigidity.

4 A parabolic arch uniformly loaded will be loaded in compression only.

5 A semi-circular arch unifirmly loaded will have some flexural stresses in addition to the
compressive ones.

13.1 Arches

6 In order to optimize dead-load efficiency, long span structures should have their shapes ap-
proximate the coresponding moment diagram, hence an arch, suspended cable, or tendon con-
figuration in a prestressed concrete beam all are nearly parabolic, Fig. 13.1.

7 Long span structures can be built using flat construction such as girders or trusses. However,
for spans in excess of 100 ft, it is often more economical to build a curved structure such as an
arch, suspended cable or thin shells.

s Since the dawn of history, mankind has tried to span distances using arch construction.
Essentially this was because an arch required materials to resist compression only (such as
stone, masonary, bricks), and labour was not an issue.

9 The basic issues of static in arch design are illustrated in Fig. 13.2 where the vertical load is

per unit horizontal projection (such as an external load but not a self-weight). Due to symmetry,

the vertical reaction is simply V = wTL, and there is no shear across the midspan of the arch

(nor a moment). Taking moment about the crown,

M=Hh-20 (5= 7) =0 (13.1)
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Solving for H

wl?

H=———
8h

(13.2)

We recall that a similar equation was derived for arches., and H is analogous to the C' — T
forces in a beam, and h is the overall height of the arch, Since h is much larger than d, H will
be much smaller than C' — T in a beam.

10 Since equilibrium requires H to remain constant across thee arch, a parabolic curve would
theoretically result in no moment on the arch section.

11 Three-hinged arches are statically determinate structures which shape can acomodate sup-
port settlements and thermal expansion without secondary internal stresses. They are also easy
to analyse through statics.

12 An arch carries the vertical load across the span through a combination of axial forces and
flexural ones. A well dimensioned arch will have a small to negligible moment, and relatively
high normal compressive stresses.

13 An arch is far more efficient than a beam, and possibly more economical and aesthetic than
a truss in carrying loads over long spans.

14 If the arch has only two hinges, Fig. 13.3, or if it has no hinges, then bending moments may
exist either at the crown or at the supports or at both places.

APPARENT LINE OF

APPARENT LINE PRESSURE WITH
OF PRESSURE WITH ARCH BENDING
ARCH BENDING ¢ INCLUDING BASE
EXCEPT AT THE BAS
w w
Phiv i iidiebviiig PR iR EIA T
s Ny h ’ ” Mcrown \Mbﬂﬁe h
. <
) h L H<H H'<H L
H=wl¥8h'< 1
wi?/gh vV v v

Figure 13.3: Two Hinged Arch, (Lin and Stotesbury 1981)

15 Since H varies inversely to the rise h, it is obvious that one should use as high a rise as
possible. For a combination of aesthetic and practical considerations, a span/rise ratio ranging
from 5 to 8 or perhaps as much as 12, is frequently used. However, as the ratio goes higher, we
may have buckling problems, and the section would then have a higher section depth, and the
arch advantage diminishes.

16 In a parabolic arch subjected to a uniform horizontal load there is no moment. However, in
practice an arch is not subjected to uniform horizontal load. First, the depth (and thus the
weight) of an arch is not usually constant, then due to the inclination of the arch the actual
self weight is not constant. Finally, live loads may act on portion of the arch, thus the line of
action will not necessarily follow the arch centroid. This last effect can be neglected if the live
load is small in comparison with the dead load.
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Solving those four equations simultaneously we have:

140 2625 0 0] ( Ray 2,900 Ra, 15.1 k
0 1 0 1|)Ra |_] 80 Raz | ) 208k
10 10[YRey () 50 (7)) Bey () 349k (13-4)
80 60 0 0] | Res 3,000 Rea 50.2 k

We can check our results by considering the summation with respect to b from the right:
(+9)BMPE = 0; —(20)(20) — (50.2)(33.75) + (34.9)(60) = 04/ (13.5)

B Example 13-2: Semi-Circular Arch, (Gerstle 1974)

Determine the reactions of the three hinged statically determined semi-circular arch under
its own dead weight w (per unit arc length s, where ds = rdf). 13.6

dP=wRd6

Figure 13.6: Semi-Circular three hinged arch
Solution:

I Reactions The reactions can be determined by integrating the load over the entire struc-
ture

1. Vertical Reaction is determined first:

(+9)XMy = 0;—(Cy)(2R) +/ wRd9 R(1 4+ cos 0) 0 (13.6-a)
moment arm
=Cy = w_R - (14 cosf)df = w—R[H—sine] 9=1
2 J ¢=0 2
wR

= T[(’ﬂ' —sinm) — (0 —sin0)]

= |[TwR (13.6-b)

2. Horizontal Reactions are determined next

(+9)XMp = 0;—(Cy)(R) + (Cy)(R) — /z_f wRdf) Rcos =0 (13.7-a)

dP moment arm
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0
/ wRda - R(cosa — cosf) + M =0 (13.12)
a=0
=|M =wR*[5(1 —sinf) + (0 — 5) cosb] (13.13)

III Deflection are determined last
1. The real curvature ¢ is obtained by dividing the moment by EI

M  wR? (7w ) m

1. The virtual force P will be a unit vertical point in the direction of the desired
deflection, causing a virtual internal moment

5M:§[1—Cos«9—sin0] 0<0<

. (13.15)

E

2. Hence, application of the virtual work equation yields:

x 2
\1:/-A = 2/::0 % [g(l —sinf) + (6 — g) cosf| - g - [1 — cosf — sin 0] Rdf
0P N dx
wR* 9
= egg T 187 —12]
= |.0337u (13.16-a)

13.1.2 Statically Indeterminate

B Example 13-3: Statically Indeterminate Arch, (Kinney 1957)

Determine the value of the horizontal reaction component of the indicated two-hinged solid
rib arch, Fig. 13.8 as caused by a concentrated vertical load of 10 k at the center line of the
span. Consider shearing, axial, and flexural strains. Assume that the rib is a W24x130 with a
total area of 38.21 in?, that it has a web area of 13.70 in?, a moment of inertia equal to 4,000
in*, B of 30,000 k/in2, and a shearing modulus G of 13,000 k/in2.

Solution:

1. Consider that end C is placed on rollers, as shown in Fig. ?? A unit fictitious horizontal
force is applied at C. The axial and shearing components of this fictitious force and of
the vertical reaction at C', acting on any section 8 in the right half of the rib, are shown
at the right end of the rib in Fig. 13-7.
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2. The expression for the horizontal displacement of C' is
Lo = Q/CB(SM%CZS+2/CB(SVAZGds+2/CB(5W%ds (13.17)
oP
3. From Fig. 13.9, for the rib from C to B,
M = g(l()() — Rcos0) (13.18-a)
SM = 1(Rsinf — 125.36) (13.18-b)
V = isine (13.18-¢c)
8V = cosf (13.18-d)
N = §COSG (13.18-¢)
SN = —sind (13.18-f)
ds = Rdf (13.18-g)

4. If the above values are substituted in Eq. 13.17 and integrated between the limits of 0.898

and /2, the result will be

Acp = 22.55 4 0.023 — 0.003 = 22.57

(13.19)

. The load P is now assumed to be removed from the rib, and a real horizontal force of
1 k is assumed to act toward the right at C in conjunction with the fictitious horizontal
force of 1 k acting to the right at the same point. The horizontal displacement of C' will

be given by

v

B_M B_
Sencn /C(s rds + /CavA .

B(S_N
2 N— 13.20-
ds + /C AEdS (13.20-a)

= 2.309+0.002 4 0.002 = 2.313 in (13.20-b)
6. The value of the horizontal reaction component will be
He = 5?:;1 = % = (13.21)
7. If only flexural strains are considered, the result would be
Heo = % = (13.22)

Comments

1. For the given rib and the single concentrated load at the center of the span it is obvious
that the effects of shearing and axial strains are insignificant and can be disregarded.
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with respect to the x and y axis are BP and AB respectively. Applying three equations
of equilibrium we obtain

O=m
FA - / wRd) =0 = |FA=wRr (13.23-a)
6=0
O=m
M~ / (wRdf)(Rsinf) =0 = |M*=2wR? (13.23-b)
6=0
O=m
MyA - / (wRAA)R(1 —cosh) =0 = M;‘ = —wR?n (13.23-¢)
6=0

IT Internal Forces are determined next

1. Shear Force:
0
(+1‘)ZFZ:0:>V—/wRda:O:> (13.24)
0

2. Bending Moment:

6
SMp=0= M — / (wRda)(Rsina) =0 = | M = wR2(1 — cosf)|  (13.25)
0

3. Torsion:

0
YXMp=0= +/ (wRda)R(1 — cosa) =0 = |T = —wR*(0 — sin0) (13.26)
0

III Deflection are determined last we assume a rectangular cross-section of width b and height
d = 2b and a Poisson’s ratio v = 0.3.

1. Noting that the member will be subjected to both flexural and torsional deforma-
tions, we seek to determine the two stiffnesses.
2. The flexural stiffness ET is given by FI = E% = E@ = # = .667Eb.

3. The torsional stiffness of solid rectangular sections J = kb3d where b is the shorter

side of the section, d the longer, and k a factor equal to .229 for % = 2. Hence
G = gy = oty = -385E, and GJ = (.385E)(.2290") = 176 Eb*.
4. Considering both flexural and torsional deformations, and replacing dx by rd6:
_ — T T
0PA = [ M= Rd / 6T~ Rdf 13.27
f/oEIzR+oGJ (13.27)
ow
Flexure Torsion
sU”

where the real moments were given above.

5. Assuming a unit virtual downward force P = 1, we have

SM = Rsinf (13.28-a)
8T = —R(1—cosf) (13.28-b)
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Z

Figure 13.11: Geometry of Curved Structure in Space

212 The weak bending axis is normal to both N and S, and thus its unit vector is determined
from

W =nxs (13.33)
13.2.1.2 Equilibrium

25 For the equilibrium equations, we consider the free body diagram of Fig. 13.12 an applied

load P is acting at point A. The resultant force vector F and resultant moment vector M
acting on the cut section B are determined from equilibrium

>F =0; P+F =0 F=-P (13.34-a)

YMP =0; LxP+M=0; M=-LxP (13.34-b)

where L is the lever arm vector from B to A.

26 The axial and shear forces N, Vs and V,, are all three components of the force vector F along
the N, S, and W axes and can be found by dot product with the appropriate unit vectors:

N = F:n (13.35-a)
V., = Fs (13.35-b)
V, = Few (13.35-¢)
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(a) Isometric View

Figure 13.13: Helicoidal Cantilevered Girder
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6. Finally, the components of the force F = —Pk and the moment M are obtained by
appropriate dot products with the unit vectors

N = Fn=|-+PL (13.47-a)

Vi = Fs=|0] (13.47-b)

Vo = Fw=|-%P (13.47-c)
T = Mwn=|-2E(1-cosb) (13.47-d)

M, = M- =|PRsinf| (13.47-¢)
M, = M-w=|LEL(1—cos0) (13.47-f)
|
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Chapter 14

BUILDING STRUCTURES

14.1 Introduction

14.1.1 Beam Column Connections

1 The connection between the beam and the column can be, Fig. 14.1:

I
b
8,
=K(0,- 6,
0 b # ec Mh ng b L)
eh # ec
Flexible Rigid ~ Semi-Flexible

Figure 14.1: Flexible, Rigid, and Semi-Flexible Joints

Flexible that is a hinge which can transfer forces only. In this case we really have cantiliver
action only. In a flexible connection the column and beam end moments are both equal
to zero, M¢o) = Mpeam = 0. The end rotation are not equal, 0.1 # Opeam-

Rigid: The connection is such that Oyeam = 0co1 and moment can be transmitted through the
connection. In a rigid connection, the end moments and rotations are equal (unless there
is an externally applied moment at the node), Mo = Mpeam 7# 0, Ocol = Obeam-

Semi-Rigid: The end moments are equal and not equal to zero, but the rotation are different.
Oveam 7# Ocol, Mool = Mpeam # 0. Furthermore, the difference in rotation is resisted by
the SpI‘iIlg Mspring = Kspring(ecol - 9beam)~

14.1.2 Behavior of Simple Frames

2 For vertical load across the beam rigid connection will reduce the maximum moment in the
beam (at the expense of a negative moment at the ends which will in turn be transferred to
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Figure 14.3: Deformation, Shear, Moment, and Axial Diagrams for Various Types of Portal
Frames Subjected to Vertical and Horizontal Loads
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14.2 Buildings Structures

11 There are three primary types of building systems:

Wall Subsytem: in which very rigid walls made up of solid masonry, paneled or braced timber,
or steel trusses constitute a rigid subsystem. This is only adequate for small rise buildings.

Vertical Shafts: made up of four solid or trussed walls forming a tubular space structure. The
tubular structure may be interior (housing elevators, staircases) and/or exterior. Most
efficient for very high rise buildings.

Rigid Frame: which consists of linear vertical components (columns) rigidly connected to stiff
horizontal ones (beams and girders). This is not a very efficient structural form to resist
lateral (wind/earthquake) loads.

14.2.1 Wall Subsystems

12 Whereas exterior wall provide enclosure and interior ones separation, both of them can also
have a structural role in trnsfering vertical and horizontal loads.

13 Walls are constructed out of masonry, timber concrete or steel.

14 If the wall is braced by floors, then it can provide an excellent resitance to horizontal load
in the plane of the wall (but not orthogonal to it).

15 When shear-walls subsytems are used, it is best if the center of orthogonal shear resistance
is close to the centroid of lateral loads as applied. If this is not the case, then there will be
torsional design problems.

14.2.1.1 Example: Concrete Shear Wall
From (Lin and Stotesbury 1981)

16 We consider a reinforced concrete wall 20 ft wide, 1 ft thick, and 120 ft high with a vertical
load of 400 k acting on it at the base. As a result of wind, we assume a uniform horizontal
force of 0.8 kip/ft of vertical height acting on the wall. It is required to compute the flexural
stresses and the shearing stresses in the wall to resist the wind load, Fig. 14.5.

1. Maximum shear force and bending moment at the base

Vinae = wL =(0.8) k.ft(120) ft = 96 k (14.8-a)
L? .8) k.ft(120)? ft2
Mz = w2 = (0 8) é 0) = 5,760 k.ft (148—b)

2. The resulting eccentricity is

M 5,760) k.ft
€Actual — F = % =14.4 ft (149)
3. The critical eccentricity is
L 20) ft
€or = i ( 6) = 3.3 ft < eactualV.G. (14.10)

thus there will be tension at the base.
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9.

10.

11.

12.

13.

The compressive stress of 740 psi can easily be sustained by concrete, as to the tensile
stress of 460 psi, it would have to be resisted by some steel reinforcement.

Given that those stresses are service stresses and not factored ones, we adopt the WSD
approach, and use an allowable stress of 20 ksi, which in turn will be increased by 4/3 for
seismic and wind load,

4
Oatl = 5(20) = 26.7 ksi (14.16)

The stress distribution is linear, compression at one end, and tension at the other. The
length of the tension area is given by (similar triangles)

T 20 460

B 2 14.17
260 ~ 260740 — * = 160 1 74020 (14.17)

The total tensile force inside this triangular stress block is

T = =(460) ksi(7.7 x 12) in (12) in = 250 k (14.18)

1
2 ——
width

The total amount of steel reinforcement needed is
2 k
. S1

This amount of reinforcement should be provided at both ends of the wall since the wind
or eartquake can act in any direction. In addition, the foundations should be designed to
resist tensile uplift forces (possibly using piles).

14.2.1.2 Example: Trussed Shear Wall

From (Lin and Stotesbury 1981)

17 We consider the same problem previously analysed, but use a trussed shear wall instead of
a concrete one, Fig. 14.6.

1.

Using the maximum moment of 5, 760 kip-ft (Eq. 14.8-b), we can compute the compression
and tension in the columns for a lever arm of 20 ft.

(5,760) kft

F=+
(20) ft

— +288 k (14.20)

If we now add the effect of the 400 kip vertical load, the forces would be

400) k

C = —% — 288 =488 k (14.21-a)
400) k

T = —% + 288 = (14.21-b)

. The force in the diagonal which must resist a base shear of 96 kip is (similar triangles)

F_ VP VORI, (1429

96 -

. The design could be modified to have no tensile forces in the columns by increasing the

width of the base (currently at 20 ft).
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w = 0.8 k/ft

120°

Figure 14.7: Design Example of a Tubular Structure, (Lin and Stotesbury 1981)

4. The maximum flexural stresses:

M k.£6(20/2) ft
S C _ , (5,760) Lii( 04/ )
I (4,600) ft

— +12.5 ksf = +87 psi (14.25)

5. The average shear stress is

vV (96)k
=— =" =24 ksf = |17 psi 14.2
TTAT 220)(1) #2 =17 ps (14.26)

6. The vertical load of 1,600 k produces an axial stress of

P —(1,600) k ,
== 5 =—20ksf=-14 14.2
o A~ e w2 0 ks 0 psi (14.27)

7. The total stresses are thus

0 = Oatof (14.28-a)
oy = —140+87 = (14.28-b)
oy = —140—87 = (14.28-c)

thus we do not have any tensile stresses, and those stresses are much better than those
obtained from a single shear wall.

14.2.3 Rigid Frames

21 Rigid frames can carry both vertical and horizontal loads, however their analysis is more
complex than for tubes.

Victor Saouma Structural Concepts and Systems for Architects



14.3 Approximate Analysis of Buildings 239

14.3.1 Vertical Loads
30 The girders at each floor are assumed to be continuous beams, and columns are assumed to
resist the resulting unbalanced moments from the girders.
31 Basic assumptions
1. Girders at each floor act as continous beams supporting a uniform load.
2. Inflection points are assumed to be at

(a) One tenth the span from both ends of each girder.
(b) Mid-height of the columns

3. Axial forces and deformation in the girder are negligibly small.
4. Unbalanced end moments from the girders at each joint is distributed to the columns

above and below the floor.

32 Based on the first assumption, all beams are statically determinate and have a span, L
equal to 0.8 the original length of the girder, L. (Note that for a rigidly connected member, the
inflection point is at 0.211 L, and at the support for a simply supported beam; hence, depending
on the nature of the connection one could consider those values as upper and lower bounds for
the approximate location of the hinge).

33 End forces are given by

Maximum positive moment at the center of each beam is, Fig. 14.9

\V
M <v > VE

Vrg’r

A\ 4
!

0.1 0.8L O1L

L

T

Figure 14.9: Approximate Analysis of Frames Subjected to Vertical Loadsi; Girder Moments

NI pHLL
MT = leg = w1(0.8)2L2 = 0.08wL? v (14.29)

8 8

Maximum negative moment at each end of the girder is given by, Fig. 14.9

Mlelt — ppret — —%(o.m)? _ %(0.8L)(0.1L) = —0.045wL> (14.30)
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Column Shear Points of inflection are at mid-height, with possible exception when the columns
on the first floor are hinged at the base, Fig. 14.11

Mtop
V= 7
2

(14.34)

Girder axial forces are assumed to be negligible eventhough the unbalanced column shears
above and below a floor will be resisted by girders at the floor.

14.3.2 Horizontal Loads

32 We must differentiate between low and high rise buildings.

Low rise buidlings, where the height is at least samller than the hrizontal dimension, the
deflected shape is characterized by shear deformations.

High rise buildings, where the height is several times greater than its least horizontal di-
mension, the deflected shape is dominated by overall flexural deformation.

14.3.2.1 Portal Method

35 Low rise buildings under lateral loads, have predominantly shear deformations. Thus, the
approximate analysis of this type of structure is based on

1. Distribution of horizontal shear forces.

2. Location of inflection points.

ss The portal method is based on the following assumptions
1. Inflection points are located at

(a) Mid-height of all columns above the second floor.
(b) Mid-height of floor columns if rigid support, or at the base if hinged.
(c) At the center of each girder.
2. Total horizontal shear at the mid-height of all columns at any floor level will be dis-

tributed among these columns so that each of the two exterior columns carry half as
much horizontal shear as each interior columns of the frame.

37 Forces are obtained from

Column Shear is obtained by passing a horizontal section through the mid-height of the
columns at each floor and summing the lateral forces above it, then Fig. 14.12

Z Flateral

Lt Vint — 2Vemt (1435)
2No. of bays

Ve:pt —
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Pcbove
A

I
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V i-1

I

Vlﬁ‘

Figure 14.14: Approximate Analysis of Frames $ubjected to Lateral Loads; Column Axial Force

below

Column Axial Forces are obtained by summing girder shears and the axial force from the

column above, Fig. 77?7

P = Pabove + Prgt + Plft

(14.39)

B Example 14-1: Approximate Analysis of a Frame subjected to Vertical and Horizontal Loads

Draw the shear, and moment diagram for the following frame. Solution:

25K/ﬁ

15¢ Vv"““““i“““““]‘z“v

5 12 |5

13
504"

7

NRRANRINNY

A

SOK d 9
1 2

/A /4
20°

b
10

30’

oo LY
3 11 P ”
Y/ Y74
24’

Figure 14.15: Example; Approximate Analysis of a Building

Vertical Loads
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Figure 14.16: Approximate Analysis of a Building; Moments Due to Vertical Loads
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Figure 14.17: Approximate Analysis of a Building; Shears Due to Vertical Loads

Horizontal Loads, Portal Method

1. Column Shears
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2. Top Column Moments
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Figure 14.20: Approximate Analysis of a Building; Moments Due to Lateral Loads
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Figure 14.22: Portal Method; Equations in Spread-Sheet

Design Parameters On the basis of the two approximate analyses, vertical and lateral load,
we now seek the design parameters for the frame, Table 14.2.

14.4 Lateral Deflections

3s Even at schematic or preliminary stages of design, it is important to estimate the lateral
deflections of tall buildings for the following reasons

1. Lateral deflections are often limited by code requirements, for example A < h/500 where
h is the height of the story or of the building. This is important because occupants should
not experience uncomfortable horizontal movements.

2. A building that deflects severly under lateral forces may have damage problems associated
with vibration (as with vertical defelctions of beams).

3. Through the evaluation of deflection, one may also get some idea of the relative horizontal
load carried by the various vertical subsystems in a building (i.e. how much is carried
by the shaft compared to the frames). Since all systems are connected, they must move
together and through their stiffness (deformation per unit load) we can determine the
contribution of each subsystem.
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Mem. Vert. | Hor. | Design
Values

-ve Moment 9.00 | 77.50 86.50

9 +ve Moment | 16.00 | 0.00 16.00
Shear 5.00 | 7.75 12.75

-ve Moment | 20.20 | 77.50 97.70

10 +ve Moment | 36.00 | 0.00 36.00

Shear 7.50 | 5.17 12.67

-ve Moment 13.0 | 77.50 90.50

11 +ve Moment | 23.00 | 0.00 23.00
Shear 6.00 | 6.46 12.46

-ve Moment 4.50 | 17.50 22.00

12 +ve Moment 8.00 | 0.00 8.00
Shear 2.50 | 1.75 4.25

-ve Moment | 10.10 | 17.50 27.60

13 +ve Moment | 18.00 | 0.00 18.00
Shear 3.75 | 1.17 4.92

-ve Moment 6.50 | 17.50 24.00

14 +ve Moment | 11.50 | 0.00 11.50
Shear 3.00 | 1.46 4.46

Table 14.2: Girders Combined Approximate Vertical and Horizontal Loads

14.4.1 Short Wall

30 In short structures (as with short beams), shear deflections, Fig. 14.23 dominates. For a

WALL ELEVATION

Figure 14.23: Shear Deformation in a Short Building, (Lin and Stotesbury 1981)

concentrated load

_1.2Vh

~ 14.40
A~ = (14.40)

where for concrete and steel G ~ %E .

Victor Saouma Structural Concepts and Systems for Architects



14.4 Lateral Deflections

257

LINTELS L }A‘

=1

] LINTEL BENDING

AAAAARARA!

|
[ T T
[T
[ T T
[T
[ T T
[T
[ T T
[T
[ T T
[T h
T o |h
[ T T
[T
[ T T
[T
[ T T
[T
[ T T
[T
[ T T
[T
[ T T
T T

h
|
1 o
i o
h
1

RELATIONSHIP BETWEEN
WALL AND LINTEL

2 WALLS CONNECTED
BY LINTELS

DEFORMATION

Figure 14.25: Deflection in a Building Structure Composed of Two Slender Walls and Lintels,

(Lin and Stotesbury 1981)

and

14.4.4 Frames

(14.43)

13 Deflection of a rigid frame is essentially caused by shear between stories which produces
vertical shears in the girders. From the portal method we can estimate those deformations,

Fig. 14.26.

11 The deformation for the first story at the exterior joint can be approximated from

col 12EIy,
N Voar L*h 2Veo, LW?
90 T 2Bl 12Ely,
Vi, h? | h 2L
A = A Aggy = —2E
totg colE+ gdr 12F [IcOlE +Igdr]

45 For the interior joint:

A — ‘/vCOl[h‘S
col 12E1,,,
A  VearL?h 2V, Lh?
99 T 2Bl 12Ely,
Vi, h2 | R L
A = A Ay = 221
tot coly + gdr 12F lICOlI * Igdr‘|

(14.44-a)
(14.44-b)

(14.44-c)

(14.45-a)
(14.45-b)

(14.45-c)
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Figure 14.28: Side-Sway Deflection from Unsymmetrical Vertical Load, (Lin and Stotesbury

1981)

14.4.5

Trussed Frame

s The cantilever deflection due to column shortening and lengthening (produced by overturning
moment) is usually of secondary importance until the building is some 40 stories or higher,Fig.

?7.

9‘ Ac ‘e

C

5,1

o

el

T

C

Figure 14.29: Axial Elongation and Shortening of a Truss Frame, (Lin and Stotesbury 1981)

19 The total deflection A at C' is given by

A=X%

PPL
AE

(14.47)

where: P is the force in any member due to loading on the whole system, L is the length of the
member, A and E the corresponding cross sectional area and modulus of elasticity, P the force
in the same member due to a unit (1) force applied in the direction of the deflection sought,
and at the point in question.

50 Alternatively, we can neglect the web deformation and consider only the axial deformations

in the colums:

A
0t + 0

Q

0t+0c h

Th
29F

(14.48)
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E = 3x10° psi = 432,000 ksf (14.49-d)
(4.8) k.ft(156)* ft
A = = 0.087 ft 14.49-
8(432, 000) ksf(9, 400) fi? (14.49-¢)
A 0.087 1
2 - 2l 14.49-f
h 156 1,800‘/ (14.49-9)

The % ratio is much less than 1/500 as permitted in most building codes, and s within
the usual index for concrete buildings, which ranges between 1/1,000 and 1/2,500.

If the wall thickness is reduced, and if door openings are considered, the deflection will
be correspondingly smaller.

The deflection due to moment increases rapidly at the top, the value of 1/1,800 indicates
only the average drift index for the entire building, whereas the story drift index may be
higher, especially for the top floor.

2. We next consider the deflection of the top of the frame. Assuming that each frame takes
1/9 of the total wind load and shear, and neglecting column shortening, then:

Veorgh? | h 2L
A = B 14.50-
12 [IcolE + Igdr] (14.50-2)
bh3  (20/12)(20/12)3 A
Iy = — = = 0.64 ft 14.50-b
: 12 12 ( )
L = 3.64 ft* (14.50-c)
ground (4.8) k.ft(156) ft
= = 41.7 k/col 14.50-d
ol 29 7k/co (14.50-d)
(41.7) k(12)? [ (12) ft 2(60) ft]
A = 14.50-
12(432,000) ksf | (0.64) f% T (3.46) ft? (14.50-¢)
= 0.00116(18.8 + 34.7) = 0.062 ft (14.50-f)

3. Since the story drift varies with the shear in the story, which decreases linearly to the
top, the average drift will be 0.062/2 = 0.31 ft per story and the deflection at top of the
building is approximately

A = (13)(0.031) =[0.40 ft (14.51)
which indicates a drift ratio of
0.4) ft
Drift Ratio for Building = % =55 (14.52-a)
0.062) ft
Drift Ratio for Ground Floor = ﬁ = ﬁ (14.52-b)

4. Comparing the frame deflection of 0.40 ft with the shaft deflection of 0.087 ft, it is seen
that the frame is about five times more flexible than the shaft. Furthermore, the frame
would not be stiff enough to carry all the lateral load by itlself. Proportioning the lateral
load to the relative stiffnesses, the frame would carry about 1/6 of the load, and the
remaining 5/6 will be carried by the shaft.

Increasing the column size will stiffen the frame, but in order to be really effective, the
girder stiffness will also need to be increased, since thegirders contribute about 2/3 of the
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Figure 14.32: Effect of Exterior Column Bracing in Buildings, (Lin and Stotesbury 1981)
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